-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtranslate.py
409 lines (376 loc) · 20.4 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#!/usr/bin/python3
# Author: GMFTBY
# Time: 2019.9.16
'''
Translate the test dataset with the best trained model
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import argparse
from tqdm import tqdm
import random
import ipdb
import math
from utils import *
from data_loader import *
from metric.metric import *
from model.seq2seq_attention import Seq2Seq
from model.seq2seq_multi_head_attention import Seq2Seq_Multi_Head
from model.seq2seq_transformer import Transformer
from model.HRED import HRED
from model.VHRED import VHRED
from model.KgCVAE import KgCVAE
from model.HRAN import HRAN
from model.HRAN_ablation import HRAN_ablation
from model.WSeq import WSeq
from model.WSeq_RA import WSeq_RA
from model.DSHRED import DSHRED
from model.DSHRED_RA import DSHRED_RA
from model.MReCoSa import MReCoSa
from model.MReCoSa_RA import MReCoSa_RA
try:
from model.MTGCN import MTGCN
from model.MTGAT import MTGAT
from model.GatedGCN import GatedGCN
from model.layers import *
except:
print(f'[!] cannot load module torch_geometric, ignore it')
def translate(**kwargs):
# load the vocab
tgt_vocab = load_pickle(kwargs['tgt_vocab'])
src_vocab = load_pickle(kwargs['src_vocab'])
src_w2idx, src_idx2w = src_vocab
tgt_w2idx, tgt_idx2w = tgt_vocab
# load dataset
if kwargs['hierarchical'] == 1:
if kwargs['graph'] == 1:
test_iter = get_batch_data_graph(kwargs['src_test'],
kwargs['tgt_test'],
kwargs['test_graph'],
kwargs['src_vocab'],
kwargs['tgt_vocab'],
kwargs['batch_size'],
kwargs['maxlen'],
kwargs["tgt_maxlen"])
else:
if kwargs['model'] in ['VHRED','KgCVAE']:
ld = False
else:
ld = True
test_iter = get_batch_data(kwargs['src_test'], kwargs['tgt_test'],
kwargs['src_vocab'], kwargs['tgt_vocab'],
kwargs['batch_size'], kwargs['maxlen'],
kwargs["tgt_maxlen"], ld=ld)
else:
test_iter = get_batch_data_flatten(kwargs['src_test'], kwargs['tgt_test'],
kwargs['src_vocab'],
kwargs['tgt_vocab'],
kwargs['batch_size'], kwargs['maxlen'],
kwargs['tgt_maxlen'])
# pretrained mode
pretrained = None
# load net
if kwargs['model'] == 'HRED':
net = HRED(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
pretrained=pretrained)
elif kwargs['model'] == 'VHRED':
net = VHRED(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
z_hidden=kwargs['z_hidden'],
pretrained=pretrained)
elif kwargs['model'] == 'KgCVAE':
net = KgCVAE(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
eos=tgt_w2idx['<eos>'], unk=tgt_w2idx['<unk>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
z_hidden=kwargs['z_hidden'],
pretrained=pretrained)
elif kwargs['model'] == 'HRAN':
net = HRAN(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
pretrained=pretrained)
elif kwargs['model'] == 'HRAN-ablation':
net = HRAN_ablation(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
pretrained=pretrained)
elif kwargs['model'] == 'DSHRED':
net = DSHRED(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
pretrained=pretrained)
elif kwargs['model'] == 'DSHRED_RA':
net = DSHRED_RA(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
pretrained=pretrained)
elif kwargs['model'] == 'WSeq':
net = WSeq(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
pretrained=pretrained)
elif kwargs['model'] == 'WSeq_RA':
net = WSeq_RA(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'],
pretrained=pretrained)
elif kwargs['model'] == 'Transformer':
net = Transformer(len(src_w2idx), len(tgt_w2idx), kwargs['d_model'],
kwargs['nhead'], kwargs['num_encoder_layers'],
kwargs['dim_feedforward'],
utter_n_layer=kwargs['utter_n_layer'],
dropout=kwargs['dropout'], sos=tgt_w2idx['<sos>'],
pad=tgt_w2idx['<pad>'], teach_force=kwargs['teach_force'],
position_embed_size=kwargs['position_embed_size'])
elif kwargs['model'] == 'MReCoSa':
net = MReCoSa(len(src_w2idx), 512, len(tgt_w2idx), 512, 512,
teach_force=kwargs['teach_force'], pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'], dropout=kwargs['dropout'],
utter_n_layer=kwargs['utter_n_layer'],
pretrained=pretrained)
elif kwargs['model'] == 'MReCoSa_RA':
net = MReCoSa_RA(len(src_w2idx), 512, len(tgt_w2idx), 512, 512,
teach_force=kwargs['teach_force'], pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'], dropout=kwargs['dropout'],
utter_n_layer=kwargs['utter_n_layer'],
pretrained=pretrained)
elif kwargs['model'] == 'Seq2Seq':
net = Seq2Seq(len(src_w2idx), kwargs['embed_size'], len(tgt_w2idx),
kwargs['utter_hidden' ],
kwargs['decoder_hidden'], teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'], sos=tgt_w2idx['<sos>'],
dropout=kwargs['dropout'],
utter_n_layer=kwargs['utter_n_layer'],
pretrained=pretrained)
elif kwargs['model'] == 'Seq2Seq_MHA':
net = Seq2Seq_Multi_Head(len(src_w2idx), kwargs['embed_size'],
len(tgt_w2idx), kwargs['utter_hidden' ],
kwargs['decoder_hidden'],
teach_force=kwargs['teach_force'],
pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'],
dropout=kwargs['dropout'],
utter_n_layer=kwargs['utter_n_layer'],
pretrained=pretrained,
nhead=kwargs['nhead'])
elif kwargs['model'] == 'MTGCN':
net = MTGCN(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
teach_force=kwargs['teach_force'], pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'], dropout=kwargs['dropout'],
utter_n_layer=kwargs['utter_n_layer'],
context_threshold=kwargs['context_threshold'])
elif kwargs['model'] == 'MTGAT':
net = MTGAT(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
teach_force=kwargs['teach_force'], pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'], dropout=kwargs['dropout'],
utter_n_layer=kwargs['utter_n_layer'],
context_threshold=kwargs['context_threshold'],
heads=kwargs['gat_heads'])
elif kwargs['model'] == 'GatedGCN':
net = GatedGCN(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
teach_force=kwargs['teach_force'], pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'], dropout=kwargs['dropout'],
utter_n_layer=kwargs['utter_n_layer'],
context_threshold=kwargs['context_threshold'])
else:
raise Exception(f'[!] wrong model named {kwargs["model"]}')
if torch.cuda.is_available():
net.cuda()
net.eval()
print('Net:')
print(net)
print(f'[!] Parameters size: {sum(x.numel() for x in net.parameters())}')
# load best model
load_best_model(kwargs['dataset'], kwargs['model'],
net, min_threshold=kwargs['min_threshold'],
max_threshold=kwargs["max_threshold"])
# calculate the loss
criterion = nn.NLLLoss(ignore_index=tgt_w2idx['<pad>'])
total_loss, batch_num = 0.0, 0
# translate
with open(kwargs['pred'], 'w') as f:
pbar = tqdm(test_iter)
for batch in pbar:
if kwargs['graph'] == 1:
sbatch, tbatch, gbatch, subatch, tubatch, turn_lengths = batch
else:
sbatch, tbatch, turn_lengths = batch
batch_size = tbatch.shape[1]
if kwargs['hierarchical']:
turn_size = len(sbatch)
src_pad, tgt_pad = src_w2idx['<pad>'], tgt_w2idx['<pad>']
src_eos, tgt_eos = src_w2idx['<eos>'], tgt_w2idx['<eos>']
# output: [maxlen, batch_size], sbatch: [turn, max_len, batch_size]
if kwargs['graph'] == 1:
output, _ = net.predict(sbatch, gbatch, subatch, tubatch, len(tbatch), turn_lengths,
loss=True)
else:
output, _ = net.predict(sbatch, len(tbatch), turn_lengths,
loss=True)
# true working ppl by using teach_force
with torch.no_grad():
if kwargs['graph'] == 1:
f_l = net(sbatch, tbatch, gbatch,
subatch, tubatch, turn_lengths)
else:
f_l = net(sbatch, tbatch, turn_lengths)
if type(f_l) == tuple:
f_l = f_l[0]
# teach_force over
# ipdb.set_trace()
loss = criterion(f_l[1:].view(-1, len(tgt_w2idx)),
tbatch[1:].contiguous().view(-1))
batch_num += 1
total_loss += loss.item()
for i in range(batch_size):
ref = list(map(int, tbatch[:, i].tolist()))
tgt = list(map(int, output[:, i].tolist())) # [maxlen]
if kwargs['hierarchical']:
src = [sbatch[j][:, i].tolist() for j in range(turn_size)] # [turns, maxlen]
else:
src = list(map(int, sbatch[:, i].tolist()))
# filte the <pad>
ref_endx = ref.index(tgt_pad) if tgt_pad in ref else len(ref)
ref_endx_ = ref.index(tgt_eos) if tgt_eos in ref else len(ref)
ref_endx = min(ref_endx, ref_endx_)
ref = ref[1:ref_endx]
ref = ' '.join(num2seq(ref, tgt_idx2w))
ref = ref.replace('<sos>', '').strip()
ref = ref.replace('< user1 >', '').strip()
ref = ref.replace('< user0 >', '').strip()
tgt_endx = tgt.index(tgt_pad) if tgt_pad in tgt else len(tgt)
tgt_endx_ = tgt.index(tgt_eos) if tgt_eos in tgt else len(tgt)
tgt_endx = min(tgt_endx, tgt_endx_)
tgt = tgt[1:tgt_endx]
tgt = ' '.join(num2seq(tgt, tgt_idx2w))
tgt = tgt.replace('<sos>', '').strip()
tgt = tgt.replace('< user1 >', '').strip()
tgt = tgt.replace('< user0 >', '').strip()
if kwargs['hierarchical']:
source = []
for item in src:
item_endx = item.index(src_pad) if src_pad in item else len(item)
item_endx_ = item.index(src_eos) if src_eos in item else len(item)
item_endx = min(item_endx, item_endx_)
item = item[1:item_endx]
item = num2seq(item, src_idx2w)
source.append(' '.join(item))
src = ' __eou__ '.join(source)
else:
src_endx = src.index(src_pad) if src_pad in src else len(src)
src_endx_ = src.index(src_eos) if src_eos in src else len(src)
sec_endx = min(src_endx, src_endx_)
src = src[1:src_endx]
src = ' '.join(num2seq(src, src_idx2w))
f.write(f'- src: {src}\n')
f.write(f'- ref: {ref}\n')
f.write(f'- tgt: {tgt}\n\n')
l = round(total_loss / batch_num, 4)
print(f'[!] write the translate result into {kwargs["pred"]}')
if kwargs['ppl'] == 'origin':
print(f'[!] loss: {l}, PPL: {round(math.exp(l), 4)}', file=open(f'./processed/{kwargs["dataset"]}/{kwargs["model"]}/pertub-ppl.txt', 'a'))
else:
raise Exception(f'[!] make sure the mode for ppl calculating is origin or ngram, but {kwargs["ppl"]} is given.')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Translate script')
parser.add_argument('--src_test', type=str, default=None, help='src test file')
parser.add_argument('--tgt_test', type=str, default=None, help='tgt test file')
parser.add_argument('--min_threshold', type=int, default=0,
help='epoch threshold for loading best model')
parser.add_argument('--max_threshold', type=int, default=20,
help='epoch threshold for loading best model')
parser.add_argument('--batch_size', type=int, default=16, help='batch size')
parser.add_argument('--model', type=str, default='HRED', help='model to be trained')
parser.add_argument('--utter_n_layer', type=int, default=1, help='layer of encoder')
parser.add_argument('--utter_hidden', type=int, default=150,
help='utterance encoder hidden size')
parser.add_argument('--context_hidden', type=int, default=150,
help='context encoder hidden size')
parser.add_argument('--decoder_hidden', type=int, default=150,
help='decoder hidden size')
parser.add_argument('--seed', type=int, default=30,
help='random seed')
parser.add_argument('--embed_size', type=int, default=200,
help='embedding layer size')
parser.add_argument('--dataset', type=str, default='dailydialog',
help='dataset for training')
parser.add_argument('--src_vocab', type=str, default=None, help='src vocabulary')
parser.add_argument('--tgt_vocab', type=str, default=None, help='tgt vocabulary')
parser.add_argument('--maxlen', type=int, default=50, help='the maxlen of the utterance')
parser.add_argument('--pred', type=str, default=None,
help='the csv file save the output')
parser.add_argument('--hierarchical', type=int, default=1, help='whether hierarchical architecture')
parser.add_argument('--d_model', type=int, default=512, help='d_model for transformer')
parser.add_argument('--nhead', type=int, default=8, help='head number for transformer')
parser.add_argument('--num_encoder_layers', type=int, default=6)
parser.add_argument('--num_decoder_layers', type=int, default=6)
parser.add_argument('--dim_feedforward', type=int, default=2048)
parser.add_argument('--tgt_maxlen', type=int, default=50, help='target sequence maxlen')
parser.add_argument('--pretrained', type=str, default=None, help='pretrained mode')
parser.add_argument('--contextrnn', dest='contextrnn', action='store_true')
parser.add_argument('--no-contextrnn', dest='contextrnn', action='store_false')
parser.add_argument('--position_embed_size', type=int, default=30)
parser.add_argument('--test_graph', type=str, default=None)
parser.add_argument('--graph', type=int, default=0)
parser.add_argument('--plus', type=int, default=2)
parser.add_argument('--context_threshold', type=int, default=3, help='low turns filter')
parser.add_argument('--ppl', type=str, default='origin', help='origin: e^{loss} ppl; ngram: supported by NLTK. More details can be found in README.')
parser.add_argument('--lr_gamma', type=float, default=0.8, help='lr schedule gamma factor')
parser.add_argument('--gat_heads', type=int, default=5, help='heads of GAT layer')
parser.add_argument('--z_hidden', type=int, default=100, help='z_hidden for VHRED')
parser.add_argument('--kl_annealing_iter', type=int, default=20000, help='KL annealing for VHRED')
parser.add_argument('--teach_force', type=float, default=1,
help='teach force ratio')
parser.add_argument('--dropout', type=float, default=1, help='dropout ratio')
args = parser.parse_args()
# show the parameters
print('Parameters:')
print(args)
# set random seed
random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
# translate
args_dict = vars(args)
with torch.no_grad():
translate(**args_dict)