forked from aiff22/PyNET
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_model_keras.py
300 lines (216 loc) · 9.48 KB
/
train_model_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright 2022 by Andrey Ignatov. All Rights Reserved.
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import load_model
import numpy as np
# Seed value
np.random.seed(0)
# Apparently you may use different seed values at each stage
# seed_value= 42
# # 1. Set the `PYTHONHASHSEED` environment variable at a fixed value
# import os
# os.environ['PYTHONHASHSEED']=str(seed_value)
# # 2. Set the `python` built-in pseudo-random generator at a fixed value
# import random
# random.seed(seed_value)
# # 3. Set the `numpy` pseudo-random generator at a fixed value
# import numpy as np
# np.random.seed(seed_value)
# # 4. Set the `tensorflow` pseudo-random generator at a fixed value
# import tensorflow as tf
# tf.random.set_seed(seed_value)
# for later versions:
# tf.compat.v1.set_random_seed(seed_value)
import sys
import os
import importlib.util
from load_dataset import load_train_patch, load_val_data
import utils
import vgg
# Processing command arguments
dir_prefix, model_path, LEVEL, batch_size, train_size, learning_rate, restore_iter, num_train_iters, dataset_dir, vgg_dir, loss_fn = \
utils.process_command_args(sys.argv)
test_batch_size = 1
if LEVEL == 3:
learning_rate = 1e-4
else:
learning_rate = 5e-5
spec = importlib.util.spec_from_file_location('pynet.model', model_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
PyNET = module.PyNET
dslr_dir = 'fujifilm/'
phone_dir = 'mediatek_raw/'
os.makedirs(dir_prefix + "models", exist_ok=True)
os.makedirs(dir_prefix + "results", exist_ok=True)
# Defining the size of the input and target image patches
PATCH_WIDTH, PATCH_HEIGHT = 128, 128
DSLR_SCALE = float(2) / (2 ** (LEVEL - 1))
TARGET_WIDTH = int(PATCH_WIDTH * DSLR_SCALE)
TARGET_HEIGHT = int(PATCH_HEIGHT * DSLR_SCALE)
TARGET_DEPTH = 3
TARGET_SIZE = TARGET_WIDTH * TARGET_HEIGHT * TARGET_DEPTH
# Defining the model architecture
with tf.compat.v1.Session() as sess:
# Placeholders for training data
phone_ = tf.keras.Input(shape=(PATCH_HEIGHT, PATCH_WIDTH, 4))
dslr_ = tf.keras.Input(shape=(TARGET_HEIGHT, TARGET_WIDTH, TARGET_DEPTH))
# Get the processed enhanced image
output_l0, output_l1, output_l2, output_l3 = \
PyNET(phone_, instance_norm=True, instance_norm_level_1=False)
if LEVEL == 3:
enhanced = output_l3
if LEVEL == 2:
enhanced = output_l2
if LEVEL == 1:
enhanced = output_l1
if LEVEL == 0:
enhanced = output_l0
print("Initializing variables")
model = tf.keras.Model(inputs=phone_, outputs=enhanced)
print(model.summary())
def log10(x):
numerator = tf.math.log(x)
denominator = tf.math.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
def loss_psnr(y_true, y_pred):
loss_mse = tf.math.reduce_mean(tf.pow(y_true - y_pred, 2))
# PSNR loss
loss_psnr = 20 * log10(1.0 / tf.sqrt(loss_mse))
return loss_psnr
def loss_ssim(y_true, y_pred):
loss_ssim = tf.reduce_mean(tf.image.ssim(y_pred, y_true, 1.0))
return loss_ssim
def loss_fn_vgg_ssim(y_true, y_pred):
# SSIM loss
loss_ssim = tf.reduce_mean(tf.image.ssim(y_pred, y_true, 1.0))
# Content loss
CONTENT_LAYER = 'relu5_4'
enhanced_vgg = vgg.net(vgg_dir, vgg.preprocess(y_pred * 255))
dslr_vgg = vgg.net(vgg_dir, vgg.preprocess(y_true * 255))
loss_content = tf.math.reduce_mean(tf.pow(enhanced_vgg[CONTENT_LAYER] - dslr_vgg[CONTENT_LAYER], 2))
# Final loss function
loss_generator = loss_content + (1 - loss_ssim) * 5
return loss_generator
def loss_fn_mse_ssim(y_true, y_pred):
enhanced_flat = tf.reshape(y_pred, [-1, TARGET_SIZE])
dslr_flat = tf.reshape(y_true, [-1, TARGET_SIZE])
# MSE loss
loss_mse = tf.reduce_mean(tf.pow(dslr_flat - enhanced_flat, 2))
# SSIM loss
loss_ssim = tf.reduce_mean(tf.image.ssim(y_pred, y_true, 1.0))
# # Final loss function
loss_generator = loss_mse * 100 + (1 - loss_ssim) * 40
return loss_generator
def loss_fn_ssim(y_true, y_pred):
# SSIM loss
loss_ssim = tf.reduce_mean(tf.image.ssim(y_pred, y_true, 1.0))
# Final loss function
loss_generator = (1 - loss_ssim) * 40
return loss_generator
loss_fn = {
'vgg+ssim': loss_fn_vgg_ssim,
'mse+ssim': loss_fn_mse_ssim,
'ssim': loss_fn_ssim
}[loss_fn]
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),
loss=loss_fn,
metrics=[loss_psnr, loss_ssim],
)
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='loss_ssim', factor=0.5, mode='max', patience=5, min_lr=1e-6, verbose=1)
csv_logger = tf.keras.callbacks.CSVLogger(dir_prefix + "models/logs.txt", append=True, separator=';')
save_model = tf.keras.callbacks.ModelCheckpoint(
dir_prefix + "models/model." + str(LEVEL) + ".{epoch:03d}.h5", monitor='val_loss', verbose=1, save_best_only=False,
save_weights_only=False, mode='auto', save_freq='epoch',
options=None
)
save_best_model = tf.keras.callbacks.ModelCheckpoint(
dir_prefix + "models/model." + str(LEVEL) + ".best.h5", monitor='val_loss', verbose=1, save_best_only=True,
save_weights_only=False, mode='auto', save_freq='epoch',
options=None
)
early_stopping = tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
min_delta=0,
patience=50,
verbose=1,
mode='auto',
baseline=None,
restore_best_weights=False
)
prev_level = (LEVEL+1)
if restore_iter != 0:
prev_model = load_model(dir_prefix + "models/model.{0}.{1}.h5".format(prev_level, restore_iter), compile=False)
for i, layer in enumerate(prev_model.layers):
try:
if model.layers[i].trainable and model.layers[i].name == layer.name:
model.layers[i].set_weights(layer.get_weights())
except:
pass
print("Loading val data...")
test_data, test_answ = load_val_data(dataset_dir, dslr_dir, phone_dir, PATCH_WIDTH, PATCH_HEIGHT, DSLR_SCALE)
print("Val data was loaded\n")
TEST_SIZE = test_data.shape[0]
num_test_batches = int(test_data.shape[0] / test_batch_size)
print("Training network")
class TrainGeneratorClass(keras.utils.Sequence):
def __init__(self, train_size, batch_size):
self.train_size = train_size
self.batch_size = batch_size
self.x, self.y = [], []
self.on_epoch_end()
def __len__(self):
return 10 * int(np.ceil(len(self.x) / float(self.batch_size)))
def on_epoch_end(self):
self.i = 0
del self.x, self.y
self.x, self.y = load_train_patch(dataset_dir, dslr_dir, phone_dir, self.train_size, PATCH_WIDTH, PATCH_HEIGHT, DSLR_SCALE)
def __getitem__(self, _):
self.i += 1
if self.i > self.train_size // self.batch_size:
self.on_epoch_end()
idx_train = np.random.randint(0, self.x.shape[0], self.batch_size)
batch_x = self.x[idx_train]
batch_y = self.y[idx_train]
for k in range(self.batch_size):
random_rotate = np.random.randint(1, 100) % 4
batch_x[k] = np.rot90(batch_x[k], random_rotate)
batch_y[k] = np.rot90(batch_y[k], random_rotate)
random_flip = np.random.randint(1, 100) % 2
if random_flip == 1:
batch_x[k] = np.flipud(batch_x[k])
batch_y[k] = np.flipud(batch_y[k])
return batch_x, batch_y
class GeneratorClass(keras.utils.Sequence):
def __init__(self, train_data, train_answ, batch_size, use_aug=True):
self.x, self.y = train_data, train_answ
self.batch_size = batch_size
self.use_aug = use_aug
def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))
def __getitem__(self, idx):
if self.use_aug:
idx_train = np.random.randint(0, self.x.shape[0], self.batch_size)
batch_x = self.x[idx_train]
batch_y = self.y[idx_train]
for k in range(self.batch_size):
random_rotate = np.random.randint(1, 100) % 4
batch_x[k] = np.rot90(batch_x[k], random_rotate)
batch_y[k] = np.rot90(batch_y[k], random_rotate)
random_flip = np.random.randint(1, 100) % 2
if random_flip == 1:
batch_x[k] = np.flipud(batch_x[k])
batch_y[k] = np.flipud(batch_y[k])
else:
batch_x = self.x[idx * self.batch_size:(idx + 1) * self.batch_size]
batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size]
return batch_x, batch_y
history = model.fit(
x=TrainGeneratorClass(batch_size * 250, batch_size), epochs=num_train_iters,
validation_data=GeneratorClass(test_data, test_answ, test_batch_size, False),
validation_steps=num_test_batches, verbose=1, validation_freq=1,
steps_per_epoch=1000,
workers=1, use_multiprocessing=False, callbacks=[reduce_lr, save_model, save_best_model, csv_logger, early_stopping]
)
print(f"Trained for {len(history.history['loss'])} epochs")