-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathTF_utils_cjy.py
139 lines (108 loc) · 6.06 KB
/
TF_utils_cjy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
'''
Tensorflow utils
Jinyoung Choi
'''
import tensorflow as tf
import numpy as np
import time
#All layers use xavier initialization
def conv_layer(layer_name,inputs,filters,size,stride,activation='lrelu'):
channels = inputs.get_shape().as_list()[3]
bound = 1.0/np.sqrt(size*size*channels)
weight = tf.Variable(tf.random_uniform([size,size,int(channels),filters], minval=-bound,maxval=bound), name=layer_name+'/w')
biases = tf.Variable(tf.random_uniform(shape=[filters], minval=-bound,maxval=bound), name=layer_name+'/b')
conv = tf.nn.conv2d(inputs, weight, strides=[1, stride, stride, 1], padding='VALID', name=layer_name+'/c')
conv_biased = tf.add(conv,biases, name=layer_name+'/cb')
print ' Layer "%s" : Type = Conv, Size = %d * %d, Stride = %d, Filters = %d, Input channels = %d, activation = %s' % (layer_name,size,size,stride,filters,int(channels),activation)
if activation == 'linear' : return conv_biased
elif activation == 'relu' : return tf.nn.relu(conv_biased,name=layer_name+'/o')
elif activation == 'lrelu' : return tf.maximum(0.1*conv_biased,conv_biased,name=layer_name+'/o')
elif activation == 'elu' : return tf.nn.elu(conv_biased,name=layer_name+'/o')
elif activation == 'tanh' : return tf.nn.tanh(conv_biased,name=layer_name+'/o')
elif activation == 'sigmoid' : return tf.nn.sigmoid(conv_biased,name=layer_name+'/o')
elif activation == 'softmax' : return tf.nn.softmax(conv_biased,name=layer_name+'/o')
elif activation == 'softplus' : return tf.nn.softplus(conv_biased,name=layer_name+'/o')
else : raise ValueError
def pooling_layer(layer_name,inputs,size,stride):
print ' Layer "%s" : Type = Pool, Size = %d * %d, Stride = %d' % (layer_name,size,size,stride)
return tf.nn.max_pool(inputs, ksize=[1, size, size, 1],strides=[1, stride, stride, 1], padding='SAME',name=layer_name+'/o')
def img_to_vec(inputs):
input_shape = inputs.get_shape().as_list()
dim = input_shape[1]*input_shape[2]*input_shape[3]
return tf.reshape(inputs, [-1,dim]), dim
def fc_layer(layer_name,inputs,hiddens,activation='lrelu'):
input_shape = inputs.get_shape().as_list()
dim = input_shape[1]
bound = 1.0/np.sqrt(dim)
weight = tf.Variable(tf.random_uniform([dim,hiddens], minval=-bound,maxval=bound),name=layer_name+'/w')
biases = tf.Variable(tf.random_uniform([hiddens], minval=-bound,maxval=bound),name=layer_name+'/b')
print ' Layer "%s" : Type = Full, Hidden = %d, Input dimension = %d, Activation = %s' % (layer_name,hiddens,int(dim),activation)
ip = tf.add(tf.matmul(inputs,weight),biases,name=layer_name+'/ip')
if activation == 'linear' : return ip
elif activation == 'relu' : return tf.nn.relu(ip,name=layer_name+'/o')
elif activation == 'elu' : return tf.nn.elu(ip,name=layer_name+'/o')
elif activation == 'lrelu' : return tf.maximum(0.1*ip,ip,name=layer_name+'/o')
elif activation == 'tanh' : return tf.nn.tanh(ip,name=layer_name+'/o')
elif activation == 'sigmoid' : return tf.nn.sigmoid(ip,name=layer_name+'/o')
elif activation == 'softmax' : return tf.nn.softmax(ip,name=layer_name+'/o')
elif activation == 'softplus' : return tf.nn.softplus(ip,name=layer_name+'/o')
else : raise ValueError
def leaky_relu(layer_name,inputs,alpha):
return tf.maximum(alpha*inputs,inputs,name=layer_name)
def get_all_var_from_net(net_name):
with tf.variable_scope(net_name) as vs:
return [v for v in tf.trainable_variables() if v.name.startswith(vs.name)]
def get_all_var_from_layer(layer_name):
with tf.variable_scope(layer_name) as vs:
return [v for v in tf.trainable_variables() if v.name.startswith(vs.name)]
def deconv_layer(layer_name,inputs,w_size,out_h,out_w,out_c,stride,activation='lrelu'):
channels = inputs.get_shape().as_list()[3]
bound = 2.0/np.sqrt(size*size*channels+size*size*out_c)
weight = tf.Variable(tf.random_uniform([w_size,w_size,out_c,int(channels)], minval=-bound,maxval=bound), name=layer_name+'/w')
biases = tf.Variable(tf.random_uniform([out_c], minval=-bound,maxval=bound), name=layer_name+'/b')
deconv = tf.nn.conv2d_transpose(inputs, weight,[tf.shape(inputs)[0],out_h,out_w,out_c],strides=[1, stride, stride, 1], padding='SAME',name=layer_name+'/dc')
deconv_biased = tf.add(deconv,biases, name=layer_name+'/db')
print ' Layer "%s" : Type = Deconv, W_Size = %d * %d, Out_Size = %d * %d, Out_channels = %d, Stride = %d, activation = %s' % (layer_name,w_size,w_size,out_h,out_w,out_c,stride,activation)
if activation == 'linear' : return deconv_biased
elif activation == 'relu' : return tf.nn.relu(deconv_biased,name=layer_name+'/o')
elif activation == 'lrelu' : return tf.maximum(0.1*deconv_biased,deconv_biased,name=layer_name+'/o')
elif activation == 'elu' : return tf.nn.elu(deconv_biased,name=layer_name+'/o')
elif activation == 'tanh' : return tf.nn.tanh(deconv_biased,name=layer_name+'/o')
elif activation == 'sigmoid' : return tf.nn.sigmoid(deconv_biased,name=layer_name+'/o')
elif activation == 'softmax' : return tf.nn.softmax(deconv_biased,name=layer_name+'/o')
elif activation == 'softplus' : return tf.nn.softplus(deconv_biased,name=layer_name+'/o')
else : raise ValueError
def display_num_params(net_name):
_vars = get_all_var_from_net(net_name)
num_par = 0
for varidx in range(len(_vars)):
ttt = _vars[varidx].get_shape().as_list()
print ttt
tt = 0
for asdf in range(len(ttt)):
if tt == 0 : tt += ttt[asdf]
else : tt *= ttt[asdf]
num_par += tt
print num_par
'''
#Test code...
x = tf.placeholder('float32',[None,84,84,4],name='x')
with tf.variable_scope('net1') as net:
net1_conv1 = conv_layer('conv1',x,4,3,2)
net1_pool2 = pooling_layer('pool2',net1_conv1,2,1)
net1_fc3 = fc_layer('fc3',net1_pool2,30,True)
with tf.variable_scope('net2') as net:
net2_conv1 = conv_layer('conv1',x,4,3,2)
net2_pool2 = pooling_layer('pool2',net2_conv1,2,1)
net2_fc3 = fc_layer('fc3',net2_pool2,30,True)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
v1 = get_all_var_from_net('net1')
v2 = get_all_var_from_net('net2')
v3 = get_all_var_from_layer('net1/conv1')
v4 = get_all_var_from_layer('net2/fc3')
for item in v1 : print item.name
for item in v2 : print item.name
for item in v3 : print item.name
for item in v4 : print item.name
'''