-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgs_analytics.py
369 lines (330 loc) · 13.9 KB
/
gs_analytics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#
# Copyright (C) 2016 Glencoe Software, Inc.
# All Rights Reserved.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import numpy as np
import omero
from omero.gateway import BlitzGateway
def get_plate_layout(conn, plate_id):
'''
Build the plate grid from a Plate.
'''
# Request plate object.
plate = conn.getObject("Plate", plate_id)
# We'll use Plate's Well Grid to map Image Id
# to a particular Row-Column Cell.
wg = plate.getWellGrid()
plate_layout = {}
# Loop over all Rows and Columns and map the ImageIds.
# For multiple fields this methods would have to be slightly modified.
for x, row in enumerate(wg):
for y, column in enumerate(row):
image_id = column.id
plate_layout[image_id] = [x, y]
plate_layout["number_of_rows"] = len(wg)
plate_layout["number_of_columns"] = len(wg[0])
return plate_layout
def build_display_matrix(plate_layout, image_id_column, property_to_display):
'''
Use the plate_layout generated by get_plate_layout() to create
a numpy array for display.
Create a numpy array with correct number of rows and columns.
Using Image Ids map Values to correct matrix elements.
'''
array = np.zeros([plate_layout["number_of_rows"],
plate_layout["number_of_columns"]])
for index, image_id in enumerate(image_id_column):
x, y = plate_layout[image_id]
array[x][y] = property_to_display[index]
return array
def set_axis_properties(axis):
'''
Axis properties for plate grid display.
'''
xlabels = range(1, 13)
ylabels = 'ABCDEFGH'
axis.xaxis.set(ticks=np.arange(0.5, len(xlabels)), ticklabels=xlabels)
axis.yaxis.set(ticks=np.arange(0.5, len(ylabels)), ticklabels=ylabels)
axis.set_ylim(axis.get_ylim()[::-1])
axis.xaxis.tick_top()
def set_axis_properties_pca(axis, x_labels, y_labels):
'''
Axis properties for Principla Component Analysis results.
'''
xlabels = x_labels
ylabels = y_labels
axis.xaxis.set(ticks=np.arange(0.5, len(xlabels)), ticklabels=xlabels)
axis.yaxis.set(ticks=np.arange(0.5, len(ylabels)), ticklabels=ylabels)
axis.set_ylim(axis.get_ylim()[::-1])
axis.xaxis.tick_top()
def get_index_list(header, columns, black_list=[]):
'''
Header filter. Used in examples to remove non analytical data.
'''
header_index = []
mark_to_delete = []
for column in columns:
if column in black_list:
mark_to_delete.append(column)
elif column not in header:
mark_to_delete.append(column)
else:
header_index.append(header.index(column))
for column in mark_to_delete:
columns.remove(column)
return header_index
def get_data_from_a_line_by_index(line, index):
'''
Row filter. Get data only for the cells given by index.
'''
data = []
for i in index:
data.append(line[i])
return data
def read_and_filter(file_path, columns_to_retrieve):
'''
Read in data from a file for specific columns.
file_path - path on the disk to a Comma Separated Value (CSV) file.
columns_to_retrive - list of column names to read in.
'''
cols = list(columns_to_retrieve)
data = []
with open(file_path) as file_to_read:
counter = 0
header_index = None
while True:
line = file_to_read.readline().strip().split(',')
if len(line) == 1:
break
if not counter:
# Get index of columns to read in.
header_index = get_index_list(line, cols)
data.append(cols)
counter += 1
continue
if header_index is None:
print("Header is None")
break
# Read data from each row only for columns_to_retrieve.
data.append(get_data_from_a_line_by_index(line, header_index))
counter += 1
return data
def add_labels(plt, names, X, Y):
'''
Add labels to points on PCA plot.
names - labels to assign to points.
X, Y - points coordinates.
'''
for label, x, y in zip(names, X, Y):
plt.annotate(
label,
xy=(x, y),
xytext=(-10, 25),
textcoords='offset points',
ha='right', va='bottom',
arrowprops=dict(arrowstyle='->', connectionstyle='arc3, rad=0'))
def connect_to_omero(user, password, host, port=4064):
conn = BlitzGateway(user, password, host=host, port=port)
print(conn.connect())
user = conn.getUser()
print("Current user:")
print(f" ID:{user.getId()}" )
print(f" Username:{user.getName()}")
print(f" Full Name:{user.getFullName()}")
print("Member of:")
for g in conn.getGroupsMemberOf():
print(f" ID:{g.getName()} Name:{g.getId()}")
group = conn.getGroupFromContext()
print(f"Current group: {group.getName()}")
return conn
def get_image_by_roi(conn, image_id, roi):
image = conn.getObject("Image", image_id)
primary_pixels = image.getPrimaryPixels()
channel_label = image.getChannelLabels()[0]
print(f"Processing channel:{channel_label}")
rect = roi.getShape(0)
x = rect.getX().getValue()
y = rect.getY().getValue()
width = rect.getWidth().getValue()
height = rect.getHeight().getValue()
tile = (int(x), int(y), int(width), int(height))
print(f"Reading tile:{tile}")
pixels = primary_pixels.getTile(0, 16, 0, tile)
return (pixels, channel_label)
def write_objects_to_rois(conn, image_id, regions, prefix, xOffset, yOffset):
image = omero.model.ImageI(image_id, False)
description = 'Created with Glencoe Software data analysis tools'
namespace = 'com.glencoesoftware.analysis'
rois = []
for i, region in enumerate(regions):
roi_el = omero.model.RoiI()
roi_el.setName(omero.rtypes.rstring(
prefix + " " + '%02d' % (i + 1) ))
x = region.centroid[1] + xOffset
y = region.centroid[0] + yOffset
point = omero.model.PointI()
point.setCx(omero.rtypes.rdouble(x))
point.setCy(omero.rtypes.rdouble(y))
point.theZ = omero.rtypes.rint(0)
point.theT = omero.rtypes.rint(0)
roi_el.addShape(point)
roi_el.setImage(image)
rois.append(roi_el)
rois = conn.getUpdateService().saveAndReturnArray(rois)
return rois
def save_map_annotations(conn, rois, regions):
links = []
description = 'Created with Glencoe Software data analysis tools'
namespace = 'com.glencoesoftware.analysis'
for k, roi in enumerate(rois):
nv = []
nv.append(omero.model.NamedValue(
"Area", str(regions[k].area)))
nv.append(omero.model.NamedValue(
"Centroid", str(regions[k].centroid)))
nv.append(omero.model.NamedValue(
"Convex Area", str(regions[k].convex_area)))
nv.append(omero.model.NamedValue(
"Eccentricity", str(regions[k].eccentricity)))
nv.append(omero.model.NamedValue(
"Extent", str(regions[k].extent)))
nv.append(omero.model.NamedValue(
"Major Axis Length", str(regions[k].major_axis_length)))
nv.append(omero.model.NamedValue(
"Minor Axis Length", str(regions[k].minor_axis_length)))
nv.append(omero.model.NamedValue(
"Orientation", str(regions[k].orientation)))
nv.append(omero.model.NamedValue(
"Perimeter", str(regions[k].perimeter)))
nv.append(omero.model.NamedValue(
"Solidity", str(regions[k].solidity)))
map_annotation = omero.model.MapAnnotationI()
map_annotation.setMapValue(nv)
map_annotation.setDescription(omero.rtypes.rstring(description))
map_annotation.setNs(omero.rtypes.rstring(namespace))
link = omero.model.RoiAnnotationLinkI()
link.setParent(omero.model.RoiI(roi.id.val, False))
link.setChild(map_annotation)
links.append(link)
links = conn.getUpdateService().saveAndReturnArray(links)
return links
def save_as_omero_table(conn, image_id, rois, regions, xOffset, yOffset):
columns = []
columns.append(omero.grid.LongColumn('Index', '', []))
columns.append(omero.grid.ImageColumn('Image', '', []))
columns.append(omero.grid.RoiColumn('Roi', '', []))
columns.append(omero.grid.DoubleColumn('CenterX', '', []))
columns.append(omero.grid.DoubleColumn('CenterY', '', []))
columns.append(omero.grid.DoubleColumn('Area', '', []))
columns.append(omero.grid.DoubleColumn('Convex Area', '', []))
columns.append(omero.grid.DoubleColumn('Eccentricity', '', []))
columns.append(omero.grid.DoubleColumn('Extent', '', []))
columns.append(omero.grid.DoubleColumn('Major Axis Length', '', []))
columns.append(omero.grid.DoubleColumn('Minor Axis Length', '', []))
columns.append(omero.grid.DoubleColumn('Orientation', '', []))
columns.append(omero.grid.DoubleColumn('Perimeter', '', []))
columns.append(omero.grid.DoubleColumn('Solidity', '', []))
tableName = 'com.glencoesoftware.analysis.table'
table = conn.c.sf.sharedResources().newTable(1, tableName)
table.initialize(columns)
data = []
cx = [region.centroid[0] - xOffset for region in regions]
cy = [region.centroid[1] - yOffset for region in regions]
data.append(omero.grid.LongColumn('Index', '', range(len(rois))))
data.append(omero.grid.ImageColumn('Image', '', [int(image_id)] * len(rois)))
data.append(omero.grid.RoiColumn('Roi', '', [roi.id.val for roi in rois]))
data.append(omero.grid.DoubleColumn('CenterX', '', cx))
data.append(omero.grid.DoubleColumn('CenterY', '', cy))
data.append(omero.grid.DoubleColumn('Area', '', [region.area for region in regions]))
data.append(omero.grid.DoubleColumn('Convex Area', '', [region.convex_area for region in regions]))
data.append(omero.grid.DoubleColumn('Eccentricity', '', [region.eccentricity for region in regions]))
data.append(omero.grid.DoubleColumn('Extent', '', [region.extent for region in regions]))
data.append(omero.grid.DoubleColumn('Major Axis Length', '', [region.major_axis_length for region in regions]))
data.append(omero.grid.DoubleColumn('Minor Axis Length', '', [region.minor_axis_length for region in regions]))
data.append(omero.grid.DoubleColumn('Orientation', '', [region.orientation for region in regions]))
data.append(omero.grid.DoubleColumn('Perimeter', '', [region.perimeter for region in regions]))
data.append(omero.grid.DoubleColumn('Solidity', '', [region.solidity for region in regions]))
table.addData(data)
table.close()
orig_file = table.getOriginalFile()
orig_file_id = orig_file.id.val
file_ann = omero.model.FileAnnotationI()
file_ann.setFile(omero.model.OriginalFileI(orig_file_id, False))
file_ann = conn.getUpdateService().saveAndReturnObject(file_ann)
link = omero.model.ImageAnnotationLinkI()
link.setParent(omero.model.ImageI(image_id, False))
link.setChild(omero.model.FileAnnotationI(file_ann.getId().getValue(), False))
link = conn.getUpdateService().saveAndReturnObject(link)
return orig_file.id.val
def summarise_regions(conn, roi_id, regions):
print(f"Computing average values for {len(regions)} regions")
cx = 0
cy = 0
area = 0
c_area = 0
eccentricity = 0
extent = 0
m_axis = 0
min_axis = 0
orientation = 0
perimeter = 0
solidity = 0
length = float(len(regions))
for region in regions:
cx += region.centroid[0]
cy += region.centroid[1]
area += region.area
c_area += region.convex_area
eccentricity += region.eccentricity
m_axis += region.major_axis_length
min_axis += region.minor_axis_length
orientation += region.orientation
perimeter += region.perimeter
solidity += region.solidity
description = 'Created with Glencoe Software data analysis tools'
namespace = 'com.glencoesoftware.analysis'
nv = []
nv.append(omero.model.NamedValue("Number of Cells", str(int(length))))
nv.append(omero.model.NamedValue(
"Area", str(area / length )))
nv.append(omero.model.NamedValue(
"Centroid", str( (cx / length, cy / length) )))
nv.append(omero.model.NamedValue(
"Convex Area", str(c_area / length)))
nv.append(omero.model.NamedValue(
"Eccentricity", str( eccentricity / length )))
nv.append(omero.model.NamedValue(
"Extent", str(extent / length)))
nv.append(omero.model.NamedValue(
"Major Axis Length", str(m_axis / length)))
nv.append(omero.model.NamedValue(
"Minor Axis Length", str(min_axis / length)))
nv.append(omero.model.NamedValue(
"Orientation", str(orientation / length)))
nv.append(omero.model.NamedValue(
"Perimeter", str(perimeter / length)))
nv.append(omero.model.NamedValue(
"Solidity", str(solidity / length)))
map_annotation = omero.model.MapAnnotationI()
map_annotation.setMapValue(nv)
map_annotation.setDescription(omero.rtypes.rstring(description))
map_annotation.setNs(omero.rtypes.rstring(namespace))
print(f"Attaching summary to ROI{roi_id}")
link = omero.model.RoiAnnotationLinkI()
link.setParent(omero.model.RoiI(roi_id, False))
link.setChild(map_annotation)
link = conn.getUpdateService().saveAndReturnObject(link)
return link