-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathDeFogify_Main.py
204 lines (173 loc) · 6.74 KB
/
DeFogify_Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import cv2
import numpy as np
import gradio as gr
import tempfile
import os
from tqdm import tqdm
# Original Functions
def dark_channel(img, size=15):
r, g, b = cv2.split(img)
min_img = cv2.min(r, cv2.min(g, b))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
dc_img = cv2.erode(min_img, kernel)
return dc_img
def get_atmo(img, percent=0.001):
mean_perpix = np.mean(img, axis=2).reshape(-1)
mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
return np.mean(mean_topper)
def get_trans(img, atom, w=0.95):
x = img / atom
t = 1 - w * dark_channel(x, 15)
return t
def guided_filter(p, i, r, e):
mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
var_I = corr_I - mean_I * mean_I
cov_Ip = corr_Ip - mean_I * mean_p
a = cov_Ip / (var_I + e)
b = mean_p - a * mean_I
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
q = mean_a * i + mean_b
return q
def dehaze(image):
img = image.astype('float64') / 255
img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY).astype('float64') / 255
atom = get_atmo(img)
trans = get_trans(img, atom)
trans_guided = guided_filter(trans, img_gray, 20, 0.0001)
trans_guided = np.maximum(trans_guided, 0.25) # Ensure trans_guided is not below 0.25
result = np.empty_like(img)
for i in range(3):
result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
result = np.clip(result, 0, 1)
return (result * 255).astype(np.uint8)
# Single Image Processing
def process_single_image(image):
dehazed_img = dehaze(image)
return dehazed_img
# Batch Processing Function for Multiple Images with Progress Bar
def process_images(files):
temp_dir = tempfile.mkdtemp()
output_files = []
for file in tqdm(files, desc="Processing Images"):
img = cv2.imread(file.name)
if img is not None:
dehazed_img = dehaze(img)
output_path = os.path.join(temp_dir, os.path.basename(file.name))
cv2.imwrite(output_path, dehazed_img)
output_files.append(output_path)
return output_files
# Video Dehazing Function with Gradio Progress Bar and Error Handling
def dehaze_video(input_video_path, output_video_path, progress=None):
try:
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
raise ValueError("Error: Could not open video.")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total_frames <= 0: # Assume a constant count for webcam scenarios
total_frames = 1000
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
frame_count = 0
if progress is not None:
progress(0, desc="Processing Video", unit="frame")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
dehazed_frame = dehaze(frame)
out.write(dehazed_frame)
frame_count += 1
if progress is not None:
progress(frame_count / total_frames) # Ensure progress is within 0-1 range
cap.release()
out.release()
print(f"\nDehazed video saved to: {output_video_path}")
except Exception as e:
print(f"An error occurred during video processing: {e}")
# Gradio Video Processing Wrapper
def process_video(file):
input_video_path = file # File is a string representing the path
output_video_path = os.path.join(tempfile.mkdtemp(), "dehazed_video.mp4")
progress = gr.Progress()
dehaze_video(input_video_path, output_video_path, progress)
return output_video_path
# Real-Time Webcam Processing with Gradio Progress Bar
def dehaze_webcam(progress=gr.Progress()):
try:
cap = cv2.VideoCapture(0) # Capture from the first webcam
if not cap.isOpened():
raise ValueError("Unable to open webcam")
frame_count = 0
total_frames = 100 # Arbitrary number for progress bar
progress(0, desc="Processing Webcam Feed", unit="frame")
while frame_count < total_frames:
ret, frame = cap.read()
if not ret:
break
dehazed_frame = dehaze(frame)
frame_count += 1
progress(frame_count / total_frames) # Ensure progress is within 0-1 range
cv2.imshow('Dehazed Webcam Feed', dehazed_frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
progress(1) # Ensure progress bar reaches 100%
except Exception as e:
print(f"An error occurred during webcam processing: {e}")
# Gradio Webcam Processing Wrapper
def process_webcam():
progress = gr.Progress()
dehaze_webcam(progress)
return "Webcam processing completed."
# Example Images for Testing
example_images = [
"Sample Images for Testing/ai-generated-9025430_1280.jpg",
"Sample Images for Testing/meadow-5648849_1280.jpg",
"Sample Images for Testing/mountains-7662717_1280.jpg",
"Sample Images for Testing/sample_image_white_wolf.jpg",
"Sample Images for Testing/nature-6722031_1280.jpg"
]
example_paths = []
for i, img_path in enumerate(example_images):
img = cv2.imread(img_path)
save_path = f"example_image_{i+1}.png"
cv2.imwrite(save_path, img)
example_paths.append([save_path])
# Gradio Interfaces
PixelDehazer = gr.Interface(
fn=process_single_image,
inputs=gr.Image(type="numpy"),
outputs="image",
examples=example_paths,
cache_examples=False,
description="Upload a single image to remove haze."
)
BatchDehazer = gr.Interface(
fn=process_images,
inputs=gr.Files(label="Upload Multiple Images", file_types=["image"]),
outputs=gr.Files(label="Download Dehazed Images"),
description="Upload multiple images to remove haze. Download the processed dehazed images."
)
VideoDehazer = gr.Interface(
fn=process_video,
inputs=gr.Video(label="Upload a Video"),
outputs=gr.File(label="Download Dehazed Video"),
description="Upload a video to remove haze. Download the processed dehazed video."
)
# Combined Gradio App
app = gr.TabbedInterface(
[PixelDehazer, BatchDehazer, VideoDehazer],
["Single Image Dehazing", "Batch Image Dehazing", "Video Dehazing"],
title="DeFogify App"
)
# Launch the Gradio App
if __name__ == "__main__":
app.launch()