-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvgg.py
90 lines (78 loc) · 2.94 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
'''VGG11/13/16/19 in Pytorch.'''
import torch
import torch.nn as nn
import math
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
class VGG(nn.Module):
def __init__(self, vgg_name, num_classes):
super(VGG, self).__init__()
self.features = self._make_layers(cfg[vgg_name])
self.classifier = nn.Sequential(
nn.Linear(512, 512),
nn.ReLU(True),
nn.Dropout(p=0.5),
nn.Linear(512 , 512),
nn.ReLU(True),
nn.Dropout(p=0.5),
nn.Linear(512, num_classes)
)
# # Initialize weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
m.bias.data.zero_() # for bias
def forward(self, x):
out = self.forward_features(x)
out = self.classifier(out)
return out
def forward_features(self,x):
out = self.features(x)
return out.view(out.size(0), -1)
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1 ,bias=True), #bias=False
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
def forward_features_blockwise(self, x):
# VGG11 forward features
features = []
x = self.features[0](x)
x = self.features[1](x); features.append(x)
x = self.features[2](x)
x = self.features[3](x)
x = self.features[4](x); features.append(x)
x = self.features[5](x)
x = self.features[6](x)
x = self.features[7](x); features.append(x)
x = self.features[8](x)
x = self.features[9](x)
x = self.features[10](x); features.append(x)
x = self.features[11](x)
x = self.features[12](x); features.append(x)
x = self.features[13](x)
x = self.features[14](x); features.append(x)
x = self.features[15](x)
x = self.features[16](x)
x = self.features[17](x); features.append(x)
x = self.features[18](x)
x = self.features[19](x); features.append(x)
return features
def test():
net = VGG('VGG11')
x = torch.randn(2,3,32,32)
y = net(x)
print(y.size())
# test()