-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_net.py
214 lines (188 loc) · 8.16 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Panoptic-DeepLab Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import os
import torch
import detectron2.data.transforms as T
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader, build_detection_test_loader
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
)
from detectron2.projects.deeplab import build_lr_scheduler
from maskrefiner.config import add_mask_refiner_config, add_panoptic_deeplab_config
from maskrefiner import PerturbedPanopticDatasetMapper
from detectron2.solver import get_default_optimizer_params
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2 import model_zoo
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains a number pre-defined logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if cfg.MODEL.PANOPTIC_DEEPLAB.BENCHMARK_NETWORK_SPEED:
return None
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder, use_fast_impl=False))
# evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_dir=output_folder))
# if evaluator_type in ["coco_instance_seg"]:
# evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
#!TODO: check whether test mapper is needed
mapper = PerturbedPanopticDatasetMapper(cfg, is_train=False)
return build_detection_test_loader(cfg, dataset_name, mapper=mapper)
@classmethod
def build_train_loader(cls, cfg):
mapper = PerturbedPanopticDatasetMapper(cfg, is_train=True)
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
"""
Build an optimizer from config.
"""
params = get_default_optimizer_params(
model,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM,
)
freeze_layers = cfg.MODEL.BACKBONE.FREEZE_LAYERS
weight_path = cfg.MODEL.BACKBONE.WEIGHTS
print("Loading pretrained weights: ", weight_path)
if weight_path != "":
pretrained_model = model_zoo.get(weight_path, trained=True)
pretrained_backbone = pretrained_model
for name, parameter in model.named_parameters():
if 'depth' in name:
continue
freeze = False
for target_name in freeze_layers:
if target_name in name:
freeze = True
break
if freeze:
parameter.requires_grad = False
# iterate over all layers in the pretrained weights
for pretrained_name, pretrained_parameter in pretrained_backbone.named_parameters():
pretrained_name = pretrained_name.replace("bottom_up.", "")
if pretrained_name in name:
# remove it from params list
params = [p for p in params if p["params"] is not parameter]
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
return maybe_add_gradient_clipping(cfg, torch.optim.SGD)(
params,
cfg.SOLVER.BASE_LR,
momentum=cfg.SOLVER.MOMENTUM,
nesterov=cfg.SOLVER.NESTEROV,
)
elif optimizer_type == "ADAM":
return maybe_add_gradient_clipping(cfg, torch.optim.Adam)(params, cfg.SOLVER.BASE_LR)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
def freeze(self, cfg):
# freeze some layers in backbone for training
# iterate over all layers in the backbone
freeze_layers = cfg.MODEL.BACKBONE.FREEZE_LAYERS
weight_path = cfg.MODEL.BACKBONE.WEIGHTS
print("Loading pretrained weights: ", weight_path)
if weight_path != "":
pretrained_model = model_zoo.get(weight_path, trained=True)
pretrained_backbone = pretrained_model
for name, parameter in self.model.named_parameters():
if 'depth' in name:
continue
freeze = False
for target_name in freeze_layers:
if target_name in name:
freeze = True
break
if freeze:
parameter.requires_grad = False
# iterate over all layers in the pretrained weights
for pretrained_name, pretrained_parameter in pretrained_backbone.named_parameters():
pretrained_name = pretrained_name.replace("bottom_up.", "")
if pretrained_name in name:
print("Load and freeze pretrained layer: {} from {}".format(name, pretrained_name))
try:
parameter.data.copy_(pretrained_parameter.data)
except:
print("Load pretrained layer {} failed".format(pretrained_name))
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_panoptic_deeplab_config(cfg)
add_mask_refiner_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# automatically set output dir
cfg.OUTPUT_DIR = args.config_file[:-5].replace("configs", "output")
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
if not args.eval_only:
trainer.freeze(cfg)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)