forked from NVIDIA/VideoProcessingFramework
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSampleDecodeMultiThread.py
160 lines (132 loc) · 5.89 KB
/
SampleDecodeMultiThread.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#
# Copyright 2020 NVIDIA Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Starting from Python 3.8 DLL search policy has changed.
# We need to add path to CUDA DLLs explicitly.
import sys
import os
if os.name == 'nt':
# Add CUDA_PATH env variable
cuda_path = os.environ["CUDA_PATH"]
if cuda_path:
os.add_dll_directory(cuda_path)
else:
print("CUDA_PATH environment variable is not set.", file = sys.stderr)
print("Can't set CUDA DLLs search path.", file = sys.stderr)
exit(1)
# Add PATH as well for minor CUDA releases
sys_path = os.environ["PATH"]
if sys_path:
paths = sys_path.split(';')
for path in paths:
if os.path.isdir(path):
os.add_dll_directory(path)
else:
print("PATH environment variable is not set.", file = sys.stderr)
exit(1)
import pycuda.driver as cuda
import PyNvCodec as nvc
import numpy as np
from threading import Thread
class Worker(Thread):
def __init__(self, gpuID, encFile):
Thread.__init__(self)
# Retain primary CUDA device context and create separate stream per thread.
self.ctx = cuda.Device(gpuID).retain_primary_context()
self.ctx.push()
self.str = cuda.Stream()
self.ctx.pop()
# Create Decoder with given CUDA context & stream.
self.nvDec = nvc.PyNvDecoder(encFile, self.ctx.handle, self.str.handle)
width, height = self.nvDec.Width(), self.nvDec.Height()
hwidth, hheight = int(width / 2), int(height / 2)
# Determine colorspace conversion parameters.
# Some video streams don't specify these parameters so default values
# are most widespread bt601 and mpeg.
cspace, crange = self.nvDec.ColorSpace(), self.nvDec.ColorRange()
if nvc.ColorSpace.UNSPEC == cspace:
cspace = nvc.ColorSpace.BT_601
if nvc.ColorRange.UDEF == crange:
crange = nvc.ColorRange.MPEG
self.cc_ctx = nvc.ColorspaceConversionContext(cspace, crange)
print('Color space: ', str(cspace))
print('Color range: ', str(crange))
# Initialize colorspace conversion chain
if self.nvDec.ColorSpace() != nvc.ColorSpace.BT_709:
self.nvYuv = nvc.PySurfaceConverter(width, height, self.nvDec.Format(), nvc.PixelFormat.YUV420, self.ctx.handle, self.str.handle)
else:
self.nvYuv = None
if self.nvYuv:
self.nvCvt = nvc.PySurfaceConverter(width, height, self.nvYuv.Format(), nvc.PixelFormat.RGB, self.ctx.handle, self.str.handle)
else:
self.nvCvt = nvc.PySurfaceConverter(width, height, self.nvDec.Format(), nvc.PixelFormat.RGB, self.ctx.handle, self.str.handle)
self.nvRes = nvc.PySurfaceResizer(hwidth, hheight, self.nvCvt.Format(), self.ctx.handle, self.str.handle)
self.nvDwn = nvc.PySurfaceDownloader(hwidth, hheight, self.nvRes.Format(), self.ctx.handle, self.str.handle)
self.num_frame = 0
def run(self):
try:
while True:
try:
self.rawSurface = self.nvDec.DecodeSingleSurface()
if (self.rawSurface.Empty()):
print('No more video frames')
break
except nvc.HwResetException:
print('Continue after HW decoder was reset')
continue
if self.nvYuv:
self.yuvSurface = self.nvYuv.Execute(self.rawSurface, self.cc_ctx)
self.cvtSurface = self.nvCvt.Execute(self.yuvSurface, self.cc_ctx)
else:
self.cvtSurface = self.nvCvt.Execute(self.rawSurface, self.cc_ctx)
if (self.cvtSurface.Empty()):
print('Failed to do color conversion')
break
self.resSurface = self.nvRes.Execute(self.cvtSurface)
if (self.resSurface.Empty()):
print('Failed to resize surface')
break
self.rawFrame = np.ndarray(shape=(self.resSurface.HostSize()), dtype=np.uint8)
success = self.nvDwn.DownloadSingleSurface(self.resSurface, self.rawFrame)
if not (success):
print('Failed to download surface')
break
self.num_frame += 1
if(0 == self.num_frame % self.nvDec.Framerate()):
print(self.num_frame)
except Exception as e:
print(getattr(e, 'message', str(e)))
fout.close()
def create_threads(gpu_id, input_file, num_threads):
cuda.init()
thread_pool = []
for i in range(0, num_threads):
thread = Worker(gpu_id, input_file)
thread.start()
thread_pool.append(thread)
for thread in thread_pool:
thread.join()
if __name__ == "__main__":
print('This sample decodes video streams in parallel threads. It does not save output.')
print('GPU-accelerated color conversion and resize are also applied.')
print('This sample may serve as a stability test.')
print('Usage: python SampleDecodeMultiThread.py $gpu_id $input $num_threads')
if(len(sys.argv) < 4):
print("Provide input CLI arguments as shown above")
exit(1)
gpu_id = int(sys.argv[1])
input_file = sys.argv[2]
num_threads = int(sys.argv[3])
create_threads(gpu_id, input_file, num_threads)