-
Notifications
You must be signed in to change notification settings - Fork 2
/
04b_combine_items.R
223 lines (184 loc) · 8.02 KB
/
04b_combine_items.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Notes -------------------------------------------------------------------
# Combine predictions from different models to compute:
# B (intensity), C (subjective symptoms), SCORAD or oSCORAD
# For B and C, RPS and lpd are computed analytically.
# For SCORAD and oSCORAD, lpd and CRPS are computed from samples
# Additional code to assess where does the variance in SCORAD comes from
# Initialisation ----------------------------------------------------------
rm(list = ls()) # Clear Workspace (better to restart the session)
source(here::here("analysis", "00_init.R"))
library(scoringRules)
#### OPTIONS
score <- "SCORAD"
dataset <- "PFDC"
mdl_name <- "EczemaPred" # name to give to the combined model (eg EczemaPred or Combined***)
t_horizon <- 4
sv <- FALSE # Whether to save results
mdl_A <- data.frame(Item = "extent", Model = "BinMC")
mdl_B <- data.frame(Item = detail_POSCORAD("Intensity signs")$Name, Model = "OrderedRW")
mdl_C <- data.frame(Item = detail_POSCORAD("Subjective symptoms")$Name, Model = "BinRW")
####
dataset <- match.arg(dataset, c("Derexyl", "PFDC", "Fake"))
mdl_scorad <- bind_rows(mdl_A, mdl_B, mdl_C)
stopifnot(mdl_scorad[["Model"]] %in% c("BinRW", "BinMC", "MC", "RW", "OrderedRW"))
dict <- detail_POSCORAD(c("Scores", "Components"))
score <- match.arg(score, dict[["Name"]])
dict <- dict %>% filter(Name == all_of(score))
score_lbl <- dict[["Label"]]
mdl_scorad[["File"]] <- vapply(1:nrow(mdl_scorad),
function(i) {
get_results_files(outcome = mdl_scorad$Item[i],
model = mdl_scorad$Model[i],
dataset = dataset,
val_horizon = t_horizon,
root_dir = here())$Val
},
character(1))
stopifnot(all(file.exists(mdl_scorad[["File"]])))
res_file <- get_results_files(outcome = score,
model = mdl_name,
dataset = dataset,
val_horizon = t_horizon,
root_dir = here())$Val
max_score <- dict[["Maximum"]]
POSCORAD <- load_dataset(dataset)
# Combining signs ----------------------------------------------------------
# Prepare dataset
pred <- POSCORAD %>%
rename(Time = Day, Score = all_of(score_lbl)) %>%
select(Patient, Time, Score) %>%
drop_na() %>%
mutate(Iteration = get_fc_iteration(Time, t_horizon))
# Compute prediction horizon (horizon for the combined score, not the individual scores)
it <- unique(pred[["Iteration"]])
pred <- lapply(it,
function(i) {
split_fc_dataset(pred, i)$Testing
}) %>%
bind_rows() %>%
select(-LastScore, -LastTime)
# Concatenate predictions for different signs
for (i in 1:nrow(mdl_scorad)) {
severity_item <- as.character(mdl_scorad$Item[i])
mdl <- as.character(mdl_scorad$Model[i])
res <- mdl_scorad$File[i] %>%
readRDS(.) %>%
select(Patient, Time, Iteration, Samples) %>%
change_colnames(., "Samples", paste0(severity_item, "_pred"))
pred <- left_join(pred, res, by = c("Patient", "Time", "Iteration"))
}
pred <- pred %>% drop_na()
# Compute severity scores
pred <- pred %>%
# mutate(across(all_of(paste0(mdl_scorad[["Item"]], "_pred")), ~map(.x, sample))) %>%
mutate(B_pred = pmap(list(redness_pred, dryness_pred, swelling_pred, oozing_pred, scratching_pred, thickening_pred),
function(...) {Reduce(`+`, list(...))}),
C_pred = pmap(list(itching_pred, sleep_pred), `+`),
oSCORAD_pred = pmap(list(extent_pred, B_pred), function(x, y) {0.2 * x + 3.5 * y}),
SCORAD_pred = pmap(list(oSCORAD_pred, C_pred), `+`))
# Prepare results dataframe
res <- pred %>%
rename(Samples = all_of(paste0(score, "_pred"))) %>%
select(Patient, Time, Score, Horizon, Iteration, Samples)
compute_discrete_metrics_from_samples <- function(res, max_score, reso = 1) {
# Add lpd and RPS to res by estimating pmf from samples
#
# Args:
# res: Dataframe with columns Score and Samples
# max_score: Maximum value that the score can take
# reso: resolution of the score
#
# Returns:
# res with additional columns lpd and RPS
library(dplyr)
stopifnot(length(max_score) == 1,
is.numeric(max_score),
max_score == round(max_score),
length(reso) == 1,
is.numeric(reso),
reso > 0)
stopifnot(is.data.frame(res),
all(c("Samples", "Score") %in% colnames(res)))
support <- seq(0, max_score, reso)
prob <- do.call(rbind,
lapply(1:nrow(res),
function(i) {
HuraultMisc::extract_distribution(c(support, res$Samples[i][[1]]), type = "discrete", support = support)$Probability
}))
lpd <- vapply(1:nrow(prob),
function(i) {
log(prob[i, as.integer(res$Score[i] / reso) + 1])
},
numeric(1))
RPS <- vapply(1:nrow(prob),
function(i) {
compute_RPS(prob[i, ], as.integer(res$Score[i] / reso) + 1)
},
numeric(1))
res <- res %>%
mutate(lpd = lpd,
RPS = RPS)
return(res)
}
if (score %in% c("B", "C")) {
res <- compute_discrete_metrics_from_samples(res,
max_score = max_score,
reso = case_when(score == "B" ~ 1,
score == "C" ~ 0.1))
}
if (score %in% c("SCORAD", "oSCORAD")) {
res <- res %>%
mutate(CRPS = crps_sample(res[["Score"]], do.call(rbind, res$Samples)),
lpd = -logs_sample(res[["Score"]], do.call(rbind, res$Samples)))
# Replace Inf (or close to Inf) estimates of lpd
lpd_lb <- -log(max_score * 100) # lower bound (cf. 1/100 probability of uniform forecast)
lpd_ub <- -log(0.1) # cf. uniform density in interval of width 0.1 (cf. resolution)
res <- res %>%
mutate(lpd = replace(lpd, lpd < lpd_lb, lpd_lb),
lpd = replace(lpd, lpd > lpd_ub, lpd_ub))
}
# Save results
if (sv) {
saveRDS(res, file = res_file)
}
# Where does the variance in SCORAD comes from? ----------------------------
if (FALSE) {
intensity_signs <- detail_POSCORAD("Intensity signs")$Name
prop <- pred %>%
mutate(across(ends_with("_pred"), ~vapply(.x, var, numeric(1)))) %>%
mutate(across(all_of(paste0(c(intensity_signs, "B"), "_pred")), ~(.x * 3.5^2))) %>%
mutate(extent_pred = extent_pred * 0.2^2) %>%
mutate(across(ends_with("_pred"), ~(.x / SCORAD_pred))) %>%
mutate(residuals = 1 - extent_pred - B_pred - C_pred)
# Evolution of prop_intensity
fc_it <- detail_fc_training(POSCORAD %>% rename(Time = Day), t_horizon)
estimate_performance("B_pred", prop, fc_it) %>%
filter(Variable == "Fit" & Horizon == 1) %>%
ggplot(aes(x = Iteration, y = Mean, ymin = Mean - SE, ymax = Mean + SE)) +
geom_line() +
geom_point() +
coord_cartesian(ylim = c(0, 1)) +
theme_bw(base_size = 15)
# Simplex plot (distribution of variance decomposition at the observation-level)
library(Ternary)
coord <- prop %>%
select(extent_pred, B_pred, C_pred)
# jpeg("results/SCORAD_prop_variance.jpg", width = 800, height = 800, quality = 90, pointsize = 25)
TernaryPlot(alab = "extent", blab = "intensity", clab = "subjective")
TernaryPoints(coord, col = 'black', pch = 20, cex = .2)
# dev.off()
# Mean proportion
prop %>%
select(ends_with("_pred")) %>%
pivot_longer(cols = everything(),
names_to = "Component",
values_to = "PV") %>%
group_by(Component) %>%
summarise(Mean = mean(PV),
SD = sd(PV),
SE = SD / sqrt(n())) %>%
arrange(Mean)
# Rank importance
rk <- lapply(1:nrow(coord), function(i) {rank(coord[i, ])}) %>% bind_rows()
apply(rk, 2, function(x) {mean(x == 3)}) # proportion of being the most important component
}