Description
Name and Version
$ ./llama-mtmd-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 ROCm devices:
Device 0: AMD Radeon RX 7800 XT, gfx1101 (0x1101), VMM: no, Wave Size: 32
version: 0 (unknown)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
actually built from commit 6aa892e - not sure why it's showing unknown version
Operating systems
Linux
GGML backends
HIP
Hardware
Ryzen 5 4500 + Radeon RX 7800XT
Models
ggml-org/Qwen2.5-VL-7B-Instruct-GGUF from HuggingFace, also tried quantizing official Qwen/Qwen2.5-VL-7B-Instruct-GGUF locally, with the same result
Problem description & steps to reproduce
We are running llama.cpp with Qwen2.5-VL-7B-Instruct like this:
build/bin/llama-server -m ../models/BroadBit/Qwen2.5-VL-7B-Instruct-Q8_0.gguf --mmproj ../models/BroadBit/mmproj-Qwen2.5-VL-7B-Instruct-f16.gguf -c 32768 -ngl 50 --temp 0.01 -np 1 --host 0.0.0.0 --port 18080 --mlock --no-warmup -t 4
Running the following prompt:
Please first output bbox coordinates and colors of every rectangle in this image in JSON format, and then answer how many rectangles are there in the image.
results in seemingly validly formatted output; however, the reported coordinates are all over the place:
"
[
{"bbox_2d": [167, 372, 458, 506], "color": "red"},
{"bbox_2d": [310, 378, 509, 492], "color": "green"},
{"bbox_2d": [630, 423, 698, 472], "color": "black"}
]
There are 3 rectangles in the image."
(Occasionally, it reports each rectangle twice, instead of just once, as seen in the llama-mtmd-cli reproduction below.)
Quantization doesn't seem to make a difference, a bf16 GGUF behaves much the same.
An online version of the same model (https://huggingface.co/spaces/prithivMLmods/Qwen2.5-VL-7B-Instruct) responds with much more reasonable coordinates:
"
[
{"bbox_2d": [194, 678, 460, 835], "color": "red"},
{"bbox_2d": [312, 547, 508, 791], "color": "green"},
{"bbox_2d": [629, 707, 700, 775], "color": "black"}
]
There are 3 rectangles in the image."
First Bad Commit
No response
Relevant log output
$ HSA_OVERRIDE_GFX_VERSION="11.0.0" ./build/bin/llama-mtmd-cli -m ../models/BroadBit/Qwen2.5-VL-7B-Instruct-Q8_0.gguf --mmproj ../models/BroadBit/mmproj-Qwen2.5-VL-7B-Instruct-f16.gguf -c 32768 -ngl 50 --temp 0.01 --mlock -t 4
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 ROCm devices:
Device 0: AMD Radeon RX 7800 XT, gfx1100 (0x1100), VMM: no, Wave Size: 32
build: 0 (unknown) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
llama_model_load_from_file_impl: using device ROCm0 (AMD Radeon RX 7800 XT) - 16184 MiB free
llama_model_loader: loaded meta data with 27 key-value pairs and 339 tensors from ../models/BroadBit/Qwen2.5-VL-7B-Instruct-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2vl
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2.5 VL 7B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Qwen2.5-VL
llama_model_loader: - kv 5: general.size_label str = 7B
llama_model_loader: - kv 6: qwen2vl.block_count u32 = 28
llama_model_loader: - kv 7: qwen2vl.context_length u32 = 128000
llama_model_loader: - kv 8: qwen2vl.embedding_length u32 = 3584
llama_model_loader: - kv 9: qwen2vl.feed_forward_length u32 = 18944
llama_model_loader: - kv 10: qwen2vl.attention.head_count u32 = 28
llama_model_loader: - kv 11: qwen2vl.attention.head_count_kv u32 = 4
llama_model_loader: - kv 12: qwen2vl.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: qwen2vl.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 14: qwen2vl.rope.dimension_sections arr[i32,4] = [16, 24, 24, 0]
llama_model_loader: - kv 15: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 16: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 19: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 22: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 24: tokenizer.chat_template str = {% set image_count = namespace(value=...
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - kv 26: general.file_type u32 = 7
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type q8_0: 198 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 7.54 GiB (8.50 BPW)
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2vl
print_info: vocab_only = 0
print_info: n_ctx_train = 128000
print_info: n_embd = 3584
print_info: n_layer = 28
print_info: n_head = 28
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 7
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 18944
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = -1
print_info: rope type = 8
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 128000
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 7B
print_info: model params = 7.62 B
print_info: general.name = Qwen2.5 VL 7B Instruct
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 28 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 29/29 layers to GPU
load_tensors: ROCm0 model buffer size = 7165.44 MiB
load_tensors: CPU_Mapped model buffer size = 552.23 MiB
.......................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (32768) < n_ctx_train (128000) -- the full capacity of the model will not be utilized
llama_context: ROCm_Host output buffer size = 0.58 MiB
llama_kv_cache_unified: kv_size = 32768, type_k = 'f16', type_v = 'f16', n_layer = 28, can_shift = 1, padding = 32
llama_kv_cache_unified: ROCm0 KV buffer size = 1792.00 MiB
llama_kv_cache_unified: KV self size = 1792.00 MiB, K (f16): 896.00 MiB, V (f16): 896.00 MiB
llama_context: ROCm0 compute buffer size = 1884.01 MiB
llama_context: ROCm_Host compute buffer size = 71.01 MiB
llama_context: graph nodes = 1042
llama_context: graph splits = 2
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
mtmd_cli_context: chat template example:
<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
clip_ctx: CLIP using ROCm0 backend
clip_model_loader: model name: Qwen2.5 VL 7B Instruct
clip_model_loader: description:
clip_model_loader: GGUF version: 3
clip_model_loader: alignment: 32
clip_model_loader: n_tensors: 519
clip_model_loader: n_kv: 22
load_hparams: projector: qwen2.5vl_merger
load_hparams: n_embd: 1280
load_hparams: n_head: 16
load_hparams: n_ff: 3420
load_hparams: n_layer: 32
load_hparams: projection_dim: 3584
load_hparams: image_size: 1024
load_hparams: patch_size: 14
load_hparams: has_llava_proj: 0
load_hparams: minicpmv_version: 0
load_hparams: proj_scale_factor: 0
load_hparams: n_wa_pattern: 8
load_hparams: ffn_op: silu
load_hparams: model size: 1291.40 MiB
load_hparams: metadata size: 0.18 MiB
alloc_compute_meta: ROCm0 compute buffer size = 2.77 MiB
alloc_compute_meta: CPU compute buffer size = 0.16 MiB
main: loading model: ../models/BroadBit/Qwen2.5-VL-7B-Instruct-Q8_0.gguf
Running in chat mode, available commands:
/image <path> load an image
/clear clear the chat history
/quit or /exit exit the program
> /image ../rectangles1024_flip.png
Image ../rectangles1024_flip.png loaded
> Please first output bbox coordinates and colors of every rectangle in this image in JSON format, and then answer how many rectangles are there in the image.
encoding image or slice...
image/slice encoded in 1652 ms
decoding image batch 1/1, n_tokens_batch = 1369
image decoded (batch 1/1) in 715 ms
[
{"bbox_2d": [166, 371, 490, 477], "color": "red"},
{"bbox_2d": [166, 477, 490, 582], "color": "red"},
{"bbox_2d": [255, 371, 482, 477], "color": "green"},
{"bbox_2d": [255, 477, 482, 582], "color": "green"},
{"bbox_2d": [599, 426, 672, 498], "color": "black"},
{"bbox_2d": [599, 498, 672, 570], "color": "black"}
]
There are 5 rectangles in the image.
> /exit
llama_perf_context_print: load time = 2973.38 ms
llama_perf_context_print: prompt eval time = 2675.57 ms / 1408 tokens ( 1.90 ms per token, 526.24 tokens per second)
llama_perf_context_print: eval time = 4500.12 ms / 214 runs ( 21.03 ms per token, 47.55 tokens per second)
llama_perf_context_print: total time = 42748.96 ms / 1622 tokens