Skip to content

Eval bug: GLM-Z1-9B-0414 #12946

Closed
Closed
@pwilkin

Description

@pwilkin

Name and Version

ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce RTX 3080, compute capability 8.6, VMM: yes
version: 5121 (c94085d)
built with cc (Ubuntu 14.2.0-4ubuntu2) 14.2.0 for x86_64-linux-gnu

Operating systems

Linux

GGML backends

CUDA

Hardware

RTX 3080

Models

https://huggingface.co/ilintar/THUDM_GLM-Z1-9B-0414_iGGUF

Issue appears even with the highest quants (Q8_0).

Problem description & steps to reproduce

After running the server (llama-server --port 2345 --top-p 0.95 --temp 0.6 -nkvo -ngl 50 -c 32000 -m THUDM_GLM-Z1-9B-0414-Q5_K_M.gguf, tried also with --jinja), the generation loops after producing ~100 tokens.

Image

I tried the model with Transformers, using --load-in-4bit (because my VRAM is not enough to run it without quants) and it generated a completely cogent response:

response.txt

First Bad Commit

No response

Relevant log output

ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3080, compute capability 8.6, VMM: yes
build: 5121 (c94085df) with cc (Ubuntu 14.2.0-4ubuntu2) 14.2.0 for x86_64-linux-gnu
system info: n_threads = 8, n_threads_batch = 8, total_threads = 8

system_info: n_threads = 8 (n_threads_batch = 8) / 8 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 2345, http threads: 7
main: loading model
srv    load_model: loading model 'THUDM_GLM-Z1-9B-0414-Q5_K_M.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3080) - 8491 MiB free
llama_model_loader: loaded meta data with 33 key-value pairs and 523 tensors from THUDM_GLM-Z1-9B-0414-Q5_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = glm4
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = THUDM_GLM Z1 9B 0414
llama_model_loader: - kv   3:                            general.version str              = 0414
llama_model_loader: - kv   4:                           general.basename str              = THUDM_GLM-Z1
llama_model_loader: - kv   5:                         general.size_label str              = 9B
llama_model_loader: - kv   6:                            general.license str              = mit
llama_model_loader: - kv   7:                               general.tags arr[str,1]       = ["text-generation"]
llama_model_loader: - kv   8:                          general.languages arr[str,2]       = ["zh", "en"]
llama_model_loader: - kv   9:                           glm4.block_count u32              = 40
llama_model_loader: - kv  10:                        glm4.context_length u32              = 32768
llama_model_loader: - kv  11:                      glm4.embedding_length u32              = 4096
llama_model_loader: - kv  12:                   glm4.feed_forward_length u32              = 13696
llama_model_loader: - kv  13:                  glm4.attention.head_count u32              = 32
llama_model_loader: - kv  14:               glm4.attention.head_count_kv u32              = 2
llama_model_loader: - kv  15:                        glm4.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  16:      glm4.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                  glm4.attention.key_length u32              = 128
llama_model_loader: - kv  18:                glm4.attention.value_length u32              = 128
llama_model_loader: - kv  19:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  20:                         tokenizer.ggml.pre str              = glm4
llama_model_loader: - kv  21:                      tokenizer.ggml.tokens arr[str,151552]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  22:                  tokenizer.ggml.token_type arr[i32,151552]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  23:                      tokenizer.ggml.merges arr[str,318088]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  24:                tokenizer.ggml.eos_token_id u32              = 151329
llama_model_loader: - kv  25:            tokenizer.ggml.padding_token_id u32              = 151329
llama_model_loader: - kv  26:                    tokenizer.chat_template str              = [gMASK]<sop>{%- if tools -%}<|system|...
llama_model_loader: - kv  27:               general.quantization_version u32              = 2
llama_model_loader: - kv  28:                          general.file_type u32              = 17
llama_model_loader: - kv  29:                      quantize.imatrix.file str              = imatrix.dat
llama_model_loader: - kv  30:                   quantize.imatrix.dataset str              = ../imatrix_train/calibration_data_v5_...
llama_model_loader: - kv  31:             quantize.imatrix.entries_count i32              = 240
llama_model_loader: - kv  32:              quantize.imatrix.chunks_count i32              = 220
llama_model_loader: - type  f32:  281 tensors
llama_model_loader: - type q5_1:   20 tensors
llama_model_loader: - type q8_0:   20 tensors
llama_model_loader: - type q5_K:  181 tensors
llama_model_loader: - type q6_K:   21 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q5_K - Medium
print_info: file size   = 6.56 GiB (5.99 BPW) 
load: special tokens cache size = 14
load: token to piece cache size = 0.9710 MB
print_info: arch             = glm4
print_info: vocab_only       = 0
print_info: n_ctx_train      = 32768
print_info: n_embd           = 4096
print_info: n_layer          = 40
print_info: n_head           = 32
print_info: n_head_kv        = 2
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 16
print_info: n_embd_k_gqa     = 256
print_info: n_embd_v_gqa     = 256
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 13696
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 32768
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 9B
print_info: model params     = 9.40 B
print_info: general.name     = THUDM_GLM Z1 9B 0414
print_info: vocab type       = BPE
print_info: n_vocab          = 151552
print_info: n_merges         = 318088
print_info: EOS token        = 151329 '<|endoftext|>'
print_info: EOT token        = 151329 '<|endoftext|>'
print_info: PAD token        = 151329 '<|endoftext|>'
print_info: LF token         = 198 'Ċ'
print_info: EOG token        = 151329 '<|endoftext|>'
print_info: max token length = 1024
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 40 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 41/41 layers to GPU
load_tensors:        CUDA0 model buffer size =  6308.38 MiB
load_tensors:   CPU_Mapped model buffer size =   407.00 MiB
....................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 32000
llama_context: n_ctx_per_seq = 32000
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (32000) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_context:  CUDA_Host  output buffer size =     0.58 MiB
init: kv_size = 32000, offload = 0, type_k = 'f16', type_v = 'f16', n_layer = 40, can_shift = 1
init:        CPU KV buffer size =  1250.00 MiB
llama_context: KV self size  = 1250.00 MiB, K (f16):  625.00 MiB, V (f16):  625.00 MiB
llama_context:      CUDA0 compute buffer size =   312.00 MiB
llama_context:  CUDA_Host compute buffer size =  2071.51 MiB
llama_context: graph nodes  = 1766
llama_context: graph splits = 82
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32000
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 32000
main: model loaded
main: chat template, chat_template: [gMASK]<sop>{%- if tools -%}<|system|>你是一个名为 ChatGLM 的人工智能助手。你是基于智谱 AI 公司训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。

# 可用工具

{% for tool in tools %}{%- set function = tool.function if tool.get("function") else tool %}

## {{ function.name }}

{{ function | tojson(indent=4, ensure_ascii=False) }}
在调用上述函数时,请使用 Json 格式表示调用的参数。{%- endfor %}{%- endif -%}{%- for msg in messages %}{%- if msg.role == 'system' %}<|system|>
{{ msg.content }}{%- endif %}{%- endfor %}{%- for message in messages if message.role != 'system' %}{%- set role = message['role'] %}{%- set content = message['content'] %}{%- set visible = content.split('</think>')[-1].strip() %}{%- set meta = message.get("metadata", "") %}{%- if role == 'user' %}<|user|>
{{ visible }}{%- elif role == 'assistant' and not meta %}<|assistant|>
{{ visible }}{%- elif role == 'assistant' and meta %}<|assistant|>{{ meta }} 
{{ visible }}{%- elif role == 'observation' %}<|observation|>
{{ visible }}{%- endif %}{%- endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}, example_format: '<|system|>
You are a helpful assistant<|user|>
Hello<|assistant|>
Hi there<|user|>
How are you?<|assistant|>'
main: server is listening on http://127.0.0.1:2345 - starting the main loop
srv  update_slots: all slots are idle
srv  params_from_: Chat format: Content-only
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 32000, n_keep = 0, n_prompt_tokens = 66
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 66, n_tokens = 66, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 66, n_tokens = 66
srv  cancel_tasks: cancel task, id_task = 0
srv  log_server_r: request: POST /chat/completions 127.0.0.1 200
slot      release: id  0 | task 0 | stop processing: n_past = 529, truncated = 0
srv  update_slots: all slots are idle
^Csrv    operator(): operator(): cleaning up before exit...

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions