-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathESIBFP.m
138 lines (130 loc) · 3.21 KB
/
ESIBFP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&&&&&&&&&&&&&&&&
%%%%%%%%%%%%%%% the algorithm &&&&&&&&&&&&&&&&&&&&&&
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&&&&&&&&&&&&&&&&&&
%% load data
load('./data/eeg-ica.mat');
Y=topography;
load('./data/gainm.mat');
L=gainmatrix;
load('ICA_grid');
U=ICAgrid;
load('Qmatrix.mat')
Q=Q; %just in order to illustrate where the Q matrix comes from
%% select which plan to caculate
p=3;
load(['covmatrix',num2str(p)]);
% load('./data/eeg_select')
% Y=Y(:,eegselect);
%% fetch the data size
% n:channels
% s;the number of tIC
% d;cortex
% k:the number of sIC
[n s]=size(Y);
d=size(L,2);
k=size(U,2);
%% initial the parameters
% gamma=zeros(k,1);
% alpha=rand(1);
% C1=eyes(n);
% C2=zeros(d,d);
%% V matrix=sum(U*q*q')
%%%%%%%%%%%%%%%%%%%%%%%%%%% plan 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%
% V1=eye(n);
% V={};
% for j=1:k
% index=find(U(:,j)==1);
% % Q()
% % plan 1
% q=sum(Q(:,index),2)./sqrt(length(index));
% V{j}=diag(q);
% %这样做变成了统计每个格点对激活其余格点的平均贡献值。
% end
% for i = 1:length(V) %lenth=sIC=20
% LVL{i} = L*V{i}*L'; %L*V*L'
% end
% Q = [V1 LVL];
% save covmatrix1.mat Q
% load covmatrix1
%%%%%%%%%%%%%%%%%%%%%%%%% plan 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% V1=eye(n);
% V={};
% for j=1:k
% index=find(U(:,j)==1);
% % % plan 2
% q=Q(:,index)*Q(:,index)';
% V{j}=q./length(index);
%
% end
%
% % 代入后验均值
% for i = 1:length(V) %lenth=sIC=20
% LVL{i} = L*V{i}*L'; %L*V*L'
% end
% Q = [V1 LVL];
% save covmatrix2.mat Q
%
% load covmatrix2
%%%%%%%%%%%%%%%%%%%%%% plan 3 for cherish %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% V1=eye(n);
% V={};
% LVL = cell(0);
% sum_C2d = 0;
% for i = 1:k
% % GM 是邻接矩阵
% % fmriic是与vertice对齐后的sICA成分
% index=find(U(:,i)==1);
% Q_temp = Q(:,index);
% Q_temp = max(Q_temp'); %找到该成分下最大的一个顶点
% Q_temp = Q_temp';
% diag_C2 = Q_temp / sum(Q_temp);
%
% actN = d - sum(diag_C2 == 0) ; %找出激活点的总个数
% fprintf(' %d : %d \n', i, actN);
% % sum_C2d = sum_C2d + diag_C2; %这是为了求MSP才做的统计
% V{i} = diag(diag_C2);
% LVL{i} = sparse(L * V{i} * L');
%
% end
% Q = [V1 LVL];
% save covmatrix3.mat Q
%
% load covmatrix3
% % 绘制混淆矩阵
%% set model to train
hp_matrix=zeros(s,k+1);
for i=1:s
%% process Y signal
Y_mean=mean(Y,1);
Y_ct=Y(:,i)-Y_mean(:,i);
YY=Y_ct(:,1)*Y_ct(:,1)';
%% process covariance cell
[Cy,h,ph,F]=spm_reml_sc(YY,[],Q); %信号方差,增益矩阵,
hp_matrix(i,:)=h; %自动转置
%Cy为gamma*V,即为协方差矩阵
%h为gamma函数
%ph为gamma的精度矩阵
%F为自由能
%Q是设计好的矩阵
%Y是原始信号
end
%% get trained parameters and plot
% C2=zeros(m);
% for i = 1:length(Qf)
% C2 = C2+h(length(Qt)+i)*Qf{i};
% end
%
% C1=zeros(n);
% for i = 1:length(Qt)
% C1 = C1+h(i)*Qt{i};
% end
%
% % w=inv(G'*pinv(C1)*G+pinv(C2))*G'*pinv(C1)*Y;
% w=C2*G'*inv(G*C2*G'+C1)*Y;
% h=h(length(Qt)+1:end);
hp_matrix = hp_matrix ./ max(hp_matrix,[],2);
h=hp_matrix(:,2:k + 1);
h(:,[3 2])=h(:,[2 3]);
save hmatrix h;
plotConfMat(h);
% surf(hp_matrix(:,2:k + 1)); %展示效果