Based on https://github.com/memiiso/debezium-server-iceberg
mvn clean package
Key | Type | Default value | Description |
---|---|---|---|
upsert | boolean | true | When true Iceberg rows will be updated based on table primary key. When false all modification will be added as separate rows. |
upsert.keep-deletes | boolean | true | When true delete operation will leave a tombstone that will have only a primary key and *__deleted** flag set to true |
upsert.dedup-column | String | __source_ts_ms | Column used to check which state is newer during upsert |
upsert.op-column | String | __op | Column used to check which state is newer during upsert when upsert.dedup-column is not enough to resolve |
allow-field-addition | boolean | true | When true sink will be adding new columns to Iceberg tables on schema changes |
table.auto-create | boolean | false | When true sink will automatically create new Iceberg tables |
table.namespace | String | default | Table namespace. In Glue it will be used as database name |
table.prefix | String | empty string | Prefix added to all table names |
iceberg.name | String | default | Iceberg catalog name |
iceberg.catalog-impl | String | null | Iceberg catalog implementation (Only one of iceberg.catalog-impl and iceberg.type can be set to non null value at the same time |
iceberg.type | String | null | Iceberg catalog type (Only one of iceberg.catalog-impl and iceberg.type can be set to non null value at the same time) |
iceberg.* | All properties with this prefix will be passed to Iceberg Catalog implementation | ||
iceberg.table-default.* | Iceberg specific table settings can be changed with this prefix, e.g. 'iceberg.table-default.write.format.default' can be set to 'orc' | ||
iceberg.partition.column | String | __source_ts | Column used for partitioning. If the column already exists, it must be of type timestamp. |
iceberg.partition.timestamp | String | __source_ts_ms | Column containing unix millisecond timestamps to be converted to partitioning times. If equal to partition.column, values will be replaced with timestamps. |
iceberg.format-version | String | 2 | Specification for the Iceberg table format. Version 1: Analytic Data Tables. Version 2: Row-level Deletes. Default 2. |
-
Copy content of
kafka-connect-iceberg-sink-0.1.4-SNAPSHOT-plugin.zip
into Kafka Connect plugins directory. Kafka Connect installing plugins -
POST
<kafka_connect_host>:<kafka_connect_port>/connectors
{
"name": "iceberg-sink",
"config": {
"connector.class": "com.getindata.kafka.connect.iceberg.sink.IcebergSink",
"topics": "topic1,topic2",
"upsert": true,
"upsert.keep-deletes": true,
"table.auto-create": true,
"table.write-format": "parquet",
"table.namespace": "my_namespace",
"table.prefix": "debeziumcdc_",
"iceberg.catalog-impl": "org.apache.iceberg.aws.glue.GlueCatalog",
"iceberg.warehouse": "s3a://my_bucket/iceberg",
"iceberg.fs.defaultFS": "s3a://my_bucket/iceberg",
"iceberg.com.amazonaws.services.s3.enableV4": true,
"iceberg.com.amazonaws.services.s3a.enableV4": true,
"iceberg.fs.s3a.aws.credentials.provider": "com.amazonaws.auth.DefaultAWSCredentialsProviderChain",
"iceberg.fs.s3a.path.style.access": true,
"iceberg.fs.s3a.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
"iceberg.fs.s3a.access.key": "my-aws-access-key",
"iceberg.fs.s3a.secret.key": "my-secret-access-key"
}
}
docker run -it --name connect --net=host -p 8083:8083 \
-e GROUP_ID=1 \
-e CONFIG_STORAGE_TOPIC=my-connect-configs \
-e OFFSET_STORAGE_TOPIC=my-connect-offsets \
-e BOOTSTRAP_SERVERS=localhost:9092 \
-e CONNECT_TOPIC_CREATION_ENABLE=true \
-v ~/.aws/config:/kafka/.aws/config \
-v ./target/plugin/kafka-connect-iceberg-sink:/kafka/connect/kafka-connect-iceberg-sink \
debezium/connect
KafkaConnect:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
annotations:
strimzi.io/use-connector-resources: "true"
spec:
version: 3.3.1
replicas: 1
bootstrapServers: kafka-cluster-kafka-bootstrap:9093
tls:
trustedCertificates:
- secretName: kafka-cluster-cluster-ca-cert
certificate: ca.crt
logging:
type: inline
loggers:
log4j.rootLogger: "INFO"
log4j.logger.com.getindata.kafka.connect.iceberg.sink.IcebergSinkTask: "DEBUG"
log4j.logger.org.apache.hadoop.io.compress.CodecPool: "WARN"
metricsConfig:
type: jmxPrometheusExporter
valueFrom:
configMapKeyRef:
name: connect-metrics
key: metrics-config.yml
config:
group.id: my-connect-cluster
offset.storage.topic: my-connect-cluster-offsets
config.storage.topic: my-connect-cluster-configs
status.storage.topic: my-connect-cluster-status
# -1 means it will use the default replication factor configured in the broker
config.storage.replication.factor: -1
offset.storage.replication.factor: -1
status.storage.replication.factor: -1
config.providers: file,secret,configmap
config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider
config.providers.secret.class: io.strimzi.kafka.KubernetesSecretConfigProvider
config.providers.configmap.class: io.strimzi.kafka.KubernetesConfigMapConfigProvider
build:
output:
type: docker
image: <yourdockerregistry>
pushSecret: <yourpushSecret>
plugins:
- name: debezium-postgresql
artifacts:
- type: zip
url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-postgres/2.0.0.Final/debezium-connector-postgres-2.0.0.Final-plugin.zip
- name: iceberg
artifacts:
- type: zip
url: https://github.com/TIKI-Institut/kafka-connect-iceberg-sink/releases/download/0.1.4-SNAPSHOT-hadoop-catalog-r3/kafka-connect-iceberg-sink-0.1.4-SNAPSHOT-plugin.zip
resources:
requests:
cpu: "0.1"
memory: 512Mi
limits:
cpu: "3"
memory: 2Gi
template:
connectContainer:
env:
# important for using AWS s3 client sdk
- name: AWS_REGION
value: "none"
KafkaConnector Debezium Source
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
name: postgres-source-connector
labels:
strimzi.io/cluster: my-connect-cluster
spec:
class: io.debezium.connector.postgresql.PostgresConnector
tasksMax: 1
config:
tasks.max: 1
topic.prefix: ""
database.hostname: <databasehost>
database.port: 5432
database.user: <dbUser>
database.password: <dbPassword>
database.dbname: <databaseName>
database.server.name: <databaseName>
transforms: unwrap
transforms.unwrap.type: io.debezium.transforms.ExtractNewRecordState
transforms.unwrap.add.fields: op,table,source.ts_ms,db
transforms.unwrap.add.headers: db
transforms.unwrap.delete.handling.mode: rewrite
transforms.unwrap.drop.tombstones: true
offset.flush.interval.ms: 0
max.batch.size: 4096 # default: 2048
max.queue.size: 16384 # default: 8192
KafkaConnector Iceberg Sink:
apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
name: iceberg-debezium-sink-connector
labels:
strimzi.io/cluster: my-connect-cluster
annotations:
strimzi.io/restart: "true"
spec:
class: com.getindata.kafka.connect.iceberg.sink.IcebergSink
tasksMax: 1
config:
topics: "<topic>"
table.namespace: ""
table.prefix: ""
table.auto-create: true
table.write-format: "parquet"
iceberg.name: "mycatalog"
# Nessie catalog
iceberg.catalog-impl: "org.apache.iceberg.nessie.NessieCatalog"
iceberg.uri: "http://nessie:19120/api/v1"
iceberg.ref: "main"
iceberg.authentication.type: "NONE"
# Warehouse
iceberg.warehouse: "s3://warehouse"
# Minio S3
iceberg.io-impl: "org.apache.iceberg.aws.s3.S3FileIO"
iceberg.s3.endpoint: "http://minio:9000"
iceberg.s3.path-style-access: true
iceberg.s3.access-key-id: ""
iceberg.s3.secret-access-key: ""
# Batch size tuning
# See: https://stackoverflow.com/questions/51753883/increase-the-number-of-messages-read-by-a-kafka-consumer-in-a-single-poll
# And the key prefix in Note: https://stackoverflow.com/a/66551961/2688589
consumer.override.max.poll.records: 2000 # default: 500
AWS credentials can be passed:
- As part of sink configuration under keys
iceberg.fs.s3a.access.key
andiceberg.fs.s3a.secret.key
- Using enviornment variables
AWS_ACCESS_KEY
andAWS_SECRET_ACCESS_KEY
- As ~/.aws/config file
https://iceberg.apache.org/docs/latest/aws/#s3-fileio
iceberg.warehouse: "s3://warehouse"
iceberg.io-impl: "org.apache.iceberg.aws.s3.S3FileIO"
iceberg.s3.endpoint: "http://minio:9000"
iceberg.s3.path-style-access: true
iceberg.s3.access-key-id: ''
iceberg.s3.secret-access-key: ''
Using GlueCatalog
{
"name": "iceberg-sink",
"config": {
"connector.class": "com.getindata.kafka.connect.iceberg.sink.IcebergSink",
"iceberg.catalog-impl": "org.apache.iceberg.aws.glue.GlueCatalog",
"iceberg.warehouse": "s3a://my_bucket/iceberg",
"iceberg.fs.s3a.access.key": "my-aws-access-key",
"iceberg.fs.s3a.secret.key": "my-secret-access-key",
...
}
}
Using HadoopCatalog
{
"name": "iceberg-sink",
"config": {
"connector.class": "com.getindata.kafka.connect.iceberg.sink.IcebergSink",
"iceberg.catalog-impl": "org.apache.iceberg.hadoop.HadoopCatalog",
"iceberg.warehouse": "s3a://my_bucket/iceberg",
...
}
}
Using HiveCatalog
{
"name": "iceberg-sink",
"config": {
"connector.class": "com.getindata.kafka.connect.iceberg.sink.IcebergSink",
"iceberg.catalog-impl": "org.apache.iceberg.hive.HiveCatalog",
"iceberg.warehouse": "s3a://my_bucket/iceberg",
"iceberg.uri": "thrift://localhost:9083",
...
}
}
Creation of new tables and extending them with new columns is supported. Sink is not doing any operations that would affect multiple rows, because of that in case of table or column deletion no data is actually removed. This can be an issue when column is dropped and then recreated with a different type. This operation can crash the sink as it will try to write new data to a still exisitng column of a different data type.
Similar problem is with changing optionality of a column. If it was not defined as required when table was first created, sink will not check if such constrain can be introduced and will ignore that.
Rows cannot be updated nor removed unless primary key is defined. In case of deletion sink behavior is also dependent on upsert.keep-deletes option. When this option is set to true sink will leave a tombstone behind in a form of row containing only a primary key value and __deleted flat set to true. When option is set to false it will remove row entirely.
The consumer reads unix millisecond timestamps from the event field configured in iceberg.partition.timestamp
, converts them to iceberg
timestamps, and writes them to the table column configured in iceberg.partition.column
. The timestamp column is then used to extract a
date to be used as the partitioning key. If iceberg.partition.timestamp
is empty, iceberg.parition.column
is assumed to already be of
type timestamp, and no conversion is performed. If they are set to the same value, the integer values will be replaced by the converted
timestamp values.
Partitioning only works when configured in append-only mode (upsert: false
).
By default, the sink expects to receive events produced by a debezium source containing a source time at which the transaction was committed:
"sourceOffset": {
...
"ts_ms": "1482918357011"
}
Kafka Connect Iceberg Sink is expecting events in a format of Debezium change event. It uses however only an after portion of that event and some metadata. Minimal fields needed for the sink to work are:
Kafka event key:
{
"schema": {
"type": "struct",
"fields": [
{
"type": "int32",
"optional": false,
"field": "some_field"
}
],
"optional": false,
"name": "some_event.Key"
},
"payload": {
"id": 1
}
}
Kafka event value:
{
"schema": {
"type": "struct",
"fields": [
{
"type": "struct",
"fields": [
{
"type": "int64",
"optional": false,
"field": "field_name"
},
...
],
"optional": true,
"name": "some_event.Value",
"field": "after"
},
{
"type": "struct",
"fields": [
{
"type": "int64",
"optional": false,
"field": "ts_ms"
},
{
"type": "string",
"optional": false,
"field": "db"
},
{
"type": "string",
"optional": false,
"field": "table"
}
],
"optional": false,
"name": "io.debezium.connector.postgresql.Source",
"field": "source"
},
{
"type": "string",
"optional": false,
"field": "op"
}
],
"optional": false,
"name": "some_event.Envelope"
},
"payload": {
"before": null,
"after": {
"some_field": 1,
...
},
"source": {
"ts_ms": 1645448938851,
"db": "some_source",
"table": "some_table"
},
"op": "c"
}
}