-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
50 lines (35 loc) · 2 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# rmexact
<!-- badges: start -->
[![NSF-2132247](https://img.shields.io/badge/NSF-2132247-blue.svg)](https://nsf.gov/awardsearch/showAward?AWD_ID=2132247)
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
[![R-CMD-check](https://github.com/gerardlab/rmexact/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/gerardlab/rmexact/actions/workflows/R-CMD-check.yaml)
[![DOI](https://zenodo.org/badge/525824572.svg)](https://zenodo.org/badge/latestdoi/525824572)
<!-- badges: end -->
Exact tests for random mating in autopolyploids. The main functions are
- `tetexact()`: Exact test using sufficient statistics for random mating in autotetraploids when the genotypes are known.
- `rmslrt()`: Exact test using the split likelihood ratio approach of Wasserman et al. (2020) for random mating in autopolyploids when genotypes are known.
- `rmchisq()`: Chi-squared test for random mating in autopolyploids when genotypes are known.
## Installation
You can install the development version of `{rmexact}` using the `{remotes}` package:
``` r
# install.packages("remotes")
remotes::install_github("dcgerard/rmexact")
```
## Code of Conduct
Please note that the rmexact project is released with a [Contributor Code of Conduct](https://contributor-covenant.org/version/2/1/CODE_OF_CONDUCT.html). By contributing to this project, you agree to abide by its terms.
## Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No. 2132247.
## References
Wasserman, L., Ramdas, A., & Balakrishnan, S. (2020). Universal inference. *Proceedings of the National Academy of Sciences*, 117(29), 16880-16890. [doi:10.1073/pnas.1922664117](https://doi.org/10.1073/pnas.1922664117)