-
Notifications
You must be signed in to change notification settings - Fork 20
/
mopad.py
4922 lines (4014 loc) · 184 KB
/
mopad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from cStringIO import StringIO
import optparse
import math
import numpy as np
import os
import os.path
import sys
import re
MOPAD_VERSION = 1.0
# constants:
dynecm = 1e-7
pi = np.pi
epsilon = 1e-13
rad2deg = 180. / pi
def wrap(text, line_length=80):
'''Paragraph and list-aware wrapping of text.'''
text = text.strip('\n')
at_lineend = re.compile(r' *\n')
at_para = re.compile(r'((^|(\n\s*)?\n)(\s+[*] )|\n\s*\n)')
paragraphs = at_para.split(text)[::5]
listindents = at_para.split(text)[4::5]
newlist = at_para.split(text)[3::5]
listindents[0:0] = [None]
listindents.append(True)
newlist.append(None)
det_indent = re.compile(r'^ *')
outlines = []
for ip, p in enumerate(paragraphs):
if not p:
continue
if listindents[ip] is None:
_indent = det_indent.findall(p)[0]
findent = _indent
else:
findent = listindents[ip]
_indent = ' ' * len(findent)
ll = line_length - len(_indent)
llf = ll
oldlines = [s.strip() for s in at_lineend.split(p.rstrip())]
p1 = ' '.join(oldlines)
possible = re.compile(r'(^.{1,%i}|.{1,%i})( |$)' % (llf, ll))
for imatch, match in enumerate(possible.finditer(p1)):
parout = match.group(1)
if imatch == 0:
outlines.append(findent + parout)
else:
outlines.append(_indent + parout)
if ip != len(paragraphs) - 1 and (
listindents[ip] is None or
newlist[ip] is not None or
listindents[ip + 1] is None):
outlines.append('')
return outlines
def basis_switcher(in_system, out_system):
from_ned = {
'NED': np.matrix([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],
dtype=np.float),
'USE': np.matrix([[0., -1., 0.], [0., 0., 1.], [-1., 0., 0.]],
dtype=np.float).I,
'XYZ': np.matrix([[0., 1., 0.], [1., 0., 0.], [0., 0., -1.]],
dtype=np.float).I,
'NWU': np.matrix([[1., 0., 0.], [0., -1., 0.], [0., 0., -1.]],
dtype=np.float).I}
return from_ned[in_system].I * from_ned[out_system]
def basis_transform_matrix(m, in_system, out_system):
r = basis_switcher(in_system, out_system)
return np.dot(r, np.dot(m, r.I))
def basis_transform_vector(v, in_system, out_system):
r = basis_switcher(in_system, out_system)
return np.dot(r, v)
class MopadHelpFormatter(optparse.IndentedHelpFormatter):
def format_option(self, option):
'''From IndentedHelpFormatter but using a different wrap method.'''
result = []
opts = self.option_strings[option]
opt_width = self.help_position - self.current_indent - 2
if len(opts) > opt_width:
opts = "%*s%s\n" % (self.current_indent, "", opts)
indent_first = self.help_position
else: # start help on same line as opts
opts = "%*s%-*s " % (self.current_indent, "", opt_width, opts)
indent_first = 0
result.append(opts)
if option.help:
help_text = self.expand_default(option)
help_lines = wrap(help_text, self.help_width)
if len(help_lines) > 1:
help_lines.append('')
result.append("%*s%s\n" % (indent_first, "", help_lines[0]))
result.extend(["%*s%s\n" % (self.help_position, "", line)
for line in help_lines[1:]])
elif opts[-1] != "\n":
result.append("\n")
return "".join(result)
def format_description(self, description):
if not description:
return ""
desc_width = self.width - self.current_indent
return '\n'.join(wrap(description, desc_width)) + "\n"
class MTError(Exception):
pass
def euler_to_matrix(alpha, beta, gamma):
'''Given the euler angles alpha,beta,gamma, create rotation matrix
Given coordinate system (x,y,z) and rotated system (xs,ys,zs)
the line of nodes is the intersection between the x-y and the xs-ys
planes.
alpha is the angle between the z-axis and the zs-axis.
beta is the angle between the x-axis and the line of nodes.
gamma is the angle between the line of nodes and the xs-axis.
Usage for moment tensors:
m_unrot = numpy.matrix([[0,0,-1],[0,0,0],[-1,0,0]])
rotmat = euler_to_matrix(dip,strike,-rake)
m = rotmat.T * m_unrot * rotmat'''
ca = math.cos(alpha)
cb = math.cos(beta)
cg = math.cos(gamma)
sa = math.sin(alpha)
sb = math.sin(beta)
sg = math.sin(gamma)
mat = np.matrix(
[[cb * cg - ca * sb * sg, sb * cg + ca * cb * sg, sa * sg],
[-cb * sg - ca * sb * cg, -sb *
sg + ca * cb * cg, sa * cg],
[sa * sb, -sa * cb, ca]], dtype=np.float)
return mat
class MomentTensor:
_m_unrot = np.matrix(
[[0., 0., -1.], [0., 0., 0.], [-1., 0., 0.]], dtype=np.float)
def __init__(self, M=None, in_system='NED', out_system='NED', debug=0):
"""
Creates a moment tensor object on the basis of a provided mechanism M.
If M is a non symmetric 3x3-matrix, the upper right triangle
of the matrix is taken as reference. M is symmetrisised
w.r.t. these entries. If M is provided as a 3-,4-,6-,7-tuple
or array, it is converted into a matrix internally according
to standard conventions (Aki & Richards).
'system' may be chosen as 'NED','USE','NWU', or 'XYZ'.
'debug' enables output on the shell at the intermediate steps.
"""
self._original_M = M[:]
self._input_basis = in_system.upper()
self._output_basis = out_system.upper()
# bring M to symmetric matrix form
self._M = self._setup_M(M, self._input_basis)
# decomposition:
self._decomposition_key = 1
# eigenvector / principal-axes system:
self._eigenvalues = None
self._eigenvectors = None
self._null_axis = None
self._t_axis = None
self._p_axis = None
self._rotation_matrix = None
# optional - maybe set afterwards by external application - for later
# plotting:
self._best_faultplane = None
self._auxiliary_plane = None
# initialise decomposition components
self._DC = None
self._DC_percentage = None
self._DC2 = None
self._DC2_percentage = None
self._DC3 = None
self._DC3_percentage = None
self._iso = None
self._iso_percentage = None
self._devi = None
self._devi_percentage = None
self._CLVD = None
self._CLVD_percentage = None
self._isotropic = None
self._deviatoric = None
self._seismic_moment = None
self._moment_magnitude = None
self._decomp_attrib_map_keys = ('in', 'out', 'type',
'full',
'iso', 'iso_perc',
'dev', 'devi', 'devi_perc',
'dc', 'dc_perc',
'dc2', 'dc2_perc',
'dc3', 'dc3_perc',
'clvd', 'clvd_perc',
'mom', 'mag',
'eigvals', 'eigvecs',
't', 'n', 'p')
self._decomp_attrib_map = dict(zip(self._decomp_attrib_map_keys,
('input_system', 'output_system',
'decomp_type', 'M',
'iso', 'iso_percentage',
'devi', 'devi', 'devi_percentage',
'DC', 'DC_percentage',
'DC2', 'DC2_percentage',
'DC3', 'DC3_percentage',
'CLVD', 'CLVD_percentage',
'moment', 'mag',
'eigvals', 'eigvecs',
't_axis', 'null_axis', 'p_axis')
))
# carry out the MT decomposition - results are in basis NED
self._decompose_M()
# set the appropriate principal axis system:
self._M_to_principal_axis_system()
def _setup_M(self, mech, input_basis):
"""
Brings the provided mechanism into symmetric 3x3 matrix form.
The source mechanism may be provided in different forms:
* as 3x3 matrix - symmetry is checked - one basis system has to be
chosen, or NED as default is taken
* as 3-element tuple or array - interpreted as strike, dip, slip-rake
angles in degree
* as 4-element tuple or array - interpreted as strike, dip, slip-rake
angles in degree + seismic scalar moment in Nm
* as 6-element tuple or array - interpreted as the 6 independent
entries of the moment tensor
* as 7-element tuple or array - interpreted as the 6 independent
entries of the moment tensor + seismic scalar moment in Nm
* as 9-element tuple or array - interpreted as the 9 entries of the
moment tensor - checked for symmetry
* as a nesting of one of the upper types (e.g. a list of n-tuples);
first element of outer nesting is taken
"""
# set source mechanism to matrix form
if mech is None:
raise MTError('Please provide a mechanism')
# if some stupid nesting occurs
if len(mech) == 1:
mech = mech[0]
# all 9 elements are given
if np.prod(np.shape(mech)) == 9:
if np.shape(mech)[0] == 3:
# assure symmetry:
mech[1, 0] = mech[0, 1]
mech[2, 0] = mech[0, 2]
mech[2, 1] = mech[1, 2]
new_M = mech
else:
new_M = np.array(mech).reshape(3, 3).copy()
new_M[1, 0] = new_M[0, 1]
new_M[2, 0] = new_M[0, 2]
new_M[2, 1] = new_M[1, 2]
# mechanism given as 6- or 7-tuple, list or array
elif len(mech) == 6 or len(mech) == 7:
M = mech
new_M = np.matrix(
np.array([M[0], M[3], M[4],
M[3], M[1], M[5],
M[4], M[5], M[2]]).reshape(3, 3))
if len(mech) == 7:
new_M = M[6] * new_M
# if given as strike, dip, rake, conventions from Jost & Herrmann hold
# - resulting matrix is in NED-basis:
elif len(mech) == 3 or len(mech) == 4:
strike, dip, rake = mech[:3]
scalar_moment = 1.0
if len(mech) == 4:
scalar_moment = mech[3]
rotmat1 = euler_to_matrix(
dip / rad2deg, strike / rad2deg, -rake / rad2deg)
new_M = rotmat1.T * MomentTensor._m_unrot * rotmat1 * scalar_moment
# to assure right basis system - others are meaningless, provided
# these angles
input_basis = 'NED'
return basis_transform_matrix(np.matrix(new_M), input_basis, 'NED')
def _decompose_M(self):
"""
Running the decomposition of the moment tensor object.
the standard decompositions M = Isotropic + DC + (CLVD or 2nd DC) are
supported (C.f. Jost & Herrmann, Aki & Richards)
"""
k = self._decomposition_key
d = MomentTensor.decomp_dict
if k in d:
d[k][1](self)
else:
raise MTError('Invalid decomposition key: %i' % k)
def print_decomposition(self):
for arg in self._decomp_attrib_map_keys:
getter = getattr(self, 'get_' + self._decomp_attrib_map[arg])
print getter(style='y', system=self._output_basis)
def _standard_decomposition(self):
"""
Decomposition according Aki & Richards and Jost & Herrmann into
isotropic + deviatoric
= isotropic + DC + CLVD
parts of the input moment tensor.
results are given as attributes, callable via the get_* function:
DC, CLVD, DC_percentage, seismic_moment, moment_magnitude
"""
M = self._M
# isotropic part
M_iso = np.diag(np.array([1. / 3 * np.trace(M),
1. / 3 * np.trace(M),
1. / 3 * np.trace(M)]))
M0_iso = abs(1. / 3 * np.trace(M))
# deviatoric part
M_devi = M - M_iso
self._isotropic = M_iso
self._deviatoric = M_devi
#eigenvalues and -vectors
eigenwtot, eigenvtot = np.linalg.eig(M_devi)
# eigenvalues and -vectors of the deviatoric part
eigenw1, eigenv1 = np.linalg.eig(M_devi)
# eigenvalues in ascending order:
eigenw = np.real(np.take(eigenw1, np.argsort(abs(eigenwtot))))
eigenv = np.real(np.take(eigenv1, np.argsort(abs(eigenwtot)), 1))
# eigenvalues in ascending order in absolute value!!:
eigenw_devi = np.real(np.take(eigenw1, np.argsort(abs(eigenw1))))
#eigenv_devi = np.real(np.take(eigenv1, np.argsort(abs(eigenw1)), 1))
M0_devi = max(abs(eigenw_devi))
# named according to Jost & Herrmann:
#a1 = eigenv[:, 0]
a2 = eigenv[:, 1]
a3 = eigenv[:, 2]
# if only isotropic part exists:
if M0_devi < epsilon:
F = 0.5
else:
F = -eigenw_devi[0] / eigenw_devi[2]
M_DC = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_CLVD = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_DC = eigenw[2] * (1 - 2 * F) * (np.outer(a3, a3) - np.outer(a2, a2))
M_CLVD = M_devi - M_DC
# according to Bowers & Hudson:
M0 = M0_iso + M0_devi
M_iso_percentage = int(round(M0_iso / M0 * 100, 6))
self._iso_percentage = M_iso_percentage
M_DC_percentage = int(round((1 - 2 * abs(F)) *
(1 - M_iso_percentage / 100.) * 100, 6))
self._DC = M_DC
self._CLVD = M_CLVD
self._DC_percentage = M_DC_percentage
self._seismic_moment = M0
self._moment_magnitude = np.log10(
self._seismic_moment * 1.0e7) / 1.5 - 10.7
def _decomposition_w_2DC(self):
"""
Decomposition according Aki & Richards and Jost & Herrmann into
isotropic + deviatoric
= isotropic + DC + DC2
parts of the input moment tensor.
results are given as attributes, callable via the get_* function:
DC1, DC2, DC_percentage, seismic_moment, moment_magnitude
"""
M = self._M
# isotropic part
M_iso = np.diag(np.array([1. / 3 * np.trace(M),
1. / 3 * np.trace(M),
1. / 3 * np.trace(M)]))
M0_iso = abs(1. / 3 * np.trace(M))
# deviatoric part
M_devi = M - M_iso
self._isotropic = M_iso
self._deviatoric = M_devi
# eigenvalues and -vectors of the deviatoric part
eigenw1, eigenv1 = np.linalg.eig(M_devi)
# eigenvalues in ascending order of their absolute values:
eigenw = np.real(
np.take(eigenw1, np.argsort(abs(eigenw1))))
eigenv = np.real(
np.take(eigenv1, np.argsort(abs(eigenw1)), 1))
M0_devi = max(abs(eigenw))
# named according to Jost & Herrmann:
a1 = eigenv[:, 0]
a2 = eigenv[:, 1]
a3 = eigenv[:, 2]
M_DC = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_DC2 = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_DC = eigenw[2] * (np.outer(a3, a3) - np.outer(a2, a2))
M_DC2 = eigenw[0] * (np.outer(a1, a1) - np.outer(a2, a2))
M_DC_percentage = abs(eigenw[2] / (abs(eigenw[2]) + abs(eigenw[0])))
self._DC = M_DC
self._DC2 = M_DC2
self._DC_percentage = M_DC_percentage
# according to Bowers & Hudson:
M0 = M0_iso + M0_devi
M_iso_percentage = int(M0_iso / M0 * 100)
self._iso_percentage = M_iso_percentage
#self._seismic_moment = np.sqrt(1./2*np.sum(eigenw**2) )
self._seismic_moment = M0
self._moment_magnitude = np.log10(
self._seismic_moment * 1.0e7) / 1.5 - 10.7
def _decomposition_w_CLVD_2DC(self):
"""
Decomposition according to Dahm (1993) into
- isotropic
- CLVD
- strike-slip
- dip-slip
parts of the input moment tensor.
results are given as attributes, callable via the get_* function:
iso, CLVD, DC1, DC2, iso_percentage, DC_percentage, DC1_percentage,
DC2_percentage, CLVD_percentage, seismic_moment, moment_magnitude
"""
M = self._M
# isotropic part
M_iso = np.diag(
np.array([1. / 3 * np.trace(M),
1. / 3 * np.trace(M),
1. / 3 * np.trace(M)]))
#M0_iso = abs(1. / 3 * np.trace(M))
# deviatoric part
M_devi = M - M_iso
self._isotropic = M_iso
self._deviatoric = M_devi
M_DC1 = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_DC2 = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_CLVD = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_DC1[0, 0] = -0.5 * (M[1, 1] - M[0, 0])
M_DC1[1, 1] = 0.5 * (M[1, 1] - M[0, 0])
M_DC1[0, 1] = M_DC1[1, 0] = M[0, 1]
M_DC2[0, 2] = M_DC2[2, 0] = M[0, 2]
M_DC2[1, 2] = M_DC2[2, 1] = M[1, 2]
M_CLVD = 1. / 3. * \
(0.5 * (M[1, 1] + M[0, 0]) - M[2, 2]) * \
np.diag(np.array([1., 1., -2.]))
M_DC = M_DC1 + M_DC2
self._DC = M_DC
self._DC1 = M_DC1
self._DC2 = M_DC2
# according to Bowers & Hudson:
eigvals_M, dummy_vecs = np.linalg.eig(M)
eigvals_M_devi, dummy_vecs = np.linalg.eig(M_devi)
eigvals_M_iso, dummy_iso = np.linalg.eig(M_iso)
eigvals_M_clvd, dummy_vecs = np.linalg.eig(M_CLVD)
eigvals_M_dc1, dummy_vecs = np.linalg.eig(M_DC1)
eigvals_M_dc2, dummy_vecs = np.linalg.eig(M_DC2)
#M0_M = np.max(np.abs(eigvals_M - 1./3*np.sum(eigvals_M) ))
M0_M_iso = np.max(
np.abs(eigvals_M_iso - 1. / 3 * np.sum(eigvals_M)))
M0_M_clvd = np.max(
np.abs(eigvals_M_clvd - 1. / 3 * np.sum(eigvals_M)))
M0_M_dc1 = np.max(
np.abs(eigvals_M_dc1 - 1. / 3 * np.sum(eigvals_M)))
M0_M_dc2 = np.max(
np.abs(eigvals_M_dc2 - 1. / 3 * np.sum(eigvals_M)))
M0_M_dc = M0_M_dc1 + M0_M_dc2
M0_M_devi = M0_M_clvd + M0_M_dc
M0_M = M0_M_iso + M0_M_devi
self._iso_percentage = int(M0_M_iso / M0_M * 100)
self._DC_percentage = int(M0_M_dc / M0_M * 100)
self._DC1_percentage = int(M0_M_dc1 / M0_M * 100)
self._DC2_percentage = int(M0_M_dc2 / M0_M * 100)
#self._seismic_moment = np.sqrt(1./2*np.sum(eigenw**2) )
self._seismic_moment = M0_M
self._moment_magnitude = np.log10(
self._seismic_moment * 1.0e7) / 1.5 - 10.7
def _decomposition_w_3DC(self):
"""
Decomposition according Aki & Richards and Jost & Herrmann into
- isotropic
- deviatoric
- 3 DC
parts of the input moment tensor.
results are given as attributes, callable via the get_* function:
DC1, DC2, DC3, DC_percentage, seismic_moment, moment_magnitude
"""
M = self._M
# isotropic part
M_iso = np.diag(np.array([1. / 3 * np.trace(M),
1. / 3 * np.trace(M),
1. / 3 * np.trace(M)]))
M0_iso = abs(1. / 3 * np.trace(M))
# deviatoric part
M_devi = M - M_iso
self._isotropic = M_iso
self._deviatoric = M_devi
# eigenvalues and -vectors of the deviatoric part
eigenw1, eigenv1 = np.linalg.eig(M_devi)
M0_devi = max(abs(eigenw1))
# eigenvalues and -vectors of the full M !!!!!!!!
eigenw1, eigenv1 = np.linalg.eig(M)
# eigenvalues in ascending order of their absolute values:
eigenw = np.real(
np.take(eigenw1, np.argsort(abs(eigenw1))))
eigenv = np.real(
np.take(eigenv1, np.argsort(abs(eigenw1)), 1))
# named according to Jost & Herrmann:
a1 = eigenv[:, 0]
a2 = eigenv[:, 1]
a3 = eigenv[:, 2]
M_DC1 = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_DC2 = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_DC3 = np.matrix(np.zeros((9), float)).reshape(3, 3)
M_DC1 = 1. / 3. * \
(eigenw[0] - eigenw[1]) * (np.outer(a1, a1) - np.outer(a2, a2))
M_DC2 = 1. / 3. * \
(eigenw[1] - eigenw[2]) * (np.outer(a2, a2) - np.outer(a3, a3))
M_DC3 = 1. / 3. * \
(eigenw[2] - eigenw[0]) * (np.outer(a3, a3) - np.outer(a1, a1))
M_DC1_perc = int(100 * abs((eigenw[0] - eigenw[1])) /
(abs((eigenw[1] - eigenw[2])) +
abs((eigenw[1] - eigenw[2])) +
abs((eigenw[2] - eigenw[0]))))
M_DC2_perc = int(100 * abs((eigenw[1] - eigenw[2])) /
(abs((eigenw[1] - eigenw[2])) +
abs((eigenw[1] - eigenw[2])) +
abs((eigenw[2] - eigenw[0]))))
self._DC = M_DC1
self._DC2 = M_DC2
self._DC3 = M_DC3
self._DC_percentage = M_DC1_perc
self._DC2_percentage = M_DC2_perc
# according to Bowers & Hudson:
M0 = M0_iso + M0_devi
M_iso_percentage = int(M0_iso / M0 * 100)
self._iso_percentage = M_iso_percentage
#self._seismic_moment = np.sqrt(1./2*np.sum(eigenw**2) )
self._seismic_moment = M0
self._moment_magnitude = np.log10(
self._seismic_moment * 1.0e7) / 1.5 - 10.7
def _M_to_principal_axis_system(self):
"""
Read in Matrix M and set up eigenvalues (EW) and eigenvectors
(EV) for setting up the principal axis system.
The internal convention is the 'HNS'-system: H is the
eigenvector for the smallest absolute eigenvalue, S is the
eigenvector for the largest absolute eigenvalue, N is the null
axis.
Naming due to the geometry: a CLVD is
Symmetric to the S-axis,
Null-axis is common sense, and the third (auxiliary) axis
Helps to construct the R³.
Additionally builds matrix for basis transformation back to NED system.
The eigensystem setup defines the colouring order for a later
plotting in the BeachBall class. This order is set by the
'_plot_clr_order' attribute.
"""
M = self._M
M_devi = self._deviatoric
# working in framework of 3 principal axes:
# eigenvalues (EW) are in order from high to low
# - neutral axis N, belongs to middle EW
# - symmetry axis S ('sigma') belongs to EW with largest absolute value
# (P- or T-axis)
# - auxiliary axis H ('help') belongs to remaining EW (T- or P-axis)
# EW sorting from lowest to highest value
EW_devi, EV_devi = np.linalg.eigh(M_devi)
EW_order = np.argsort(EW_devi)
# print 'order',EW_order
if 1: # self._plot_isotropic_part:
trace_M = np.trace(M)
if abs(trace_M) < epsilon:
trace_M = 0
EW, EV = np.linalg.eigh(M)
for i, ew in enumerate(EW):
if abs(EW[i]) < epsilon:
EW[i] = 0
else:
trace_M = np.trace(M_devi)
if abs(trace_M) < epsilon:
trace_M = 0
EW, EV = np.linalg.eigh(M_devi)
for i, ew in enumerate(EW):
if abs(EW[i]) < epsilon:
EW[i] = 0
EW1_devi = EW_devi[EW_order[0]]
EW2_devi = EW_devi[EW_order[1]]
EW3_devi = EW_devi[EW_order[2]]
EV1_devi = EV_devi[:, EW_order[0]]
EV2_devi = EV_devi[:, EW_order[1]]
EV3_devi = EV_devi[:, EW_order[2]]
EW1 = EW[EW_order[0]]
EW2 = EW[EW_order[1]]
EW3 = EW[EW_order[2]]
EV1 = EV[:, EW_order[0]]
EV2 = EV[:, EW_order[1]]
EV3 = EV[:, EW_order[2]]
chng_basis_tmp = np.asmatrix(np.zeros((3, 3)))
chng_basis_tmp[:, 0] = EV1_devi
chng_basis_tmp[:, 1] = EV2_devi
chng_basis_tmp[:, 2] = EV3_devi
symmetry_around_tension = 1
clr = 1
if abs(EW2_devi) < epsilon:
EW2_devi = 0
# implosion
if EW1 < 0 and EW2 < 0 and EW3 < 0:
symmetry_around_tension = 0
# logger.debug( 'IMPLOSION - symmetry around pressure axis \n\n')
clr = 1
# explosion
elif EW1 > 0 and EW2 > 0 and EW3 > 0:
symmetry_around_tension = 1
if abs(EW1_devi) > abs(EW3_devi):
symmetry_around_tension = 0
# logger.debug( 'EXPLOSION - symmetry around tension axis \n\n')
clr = -1
# net-implosion
elif EW2 < 0 and sum([EW1, EW2, EW3]) < 0:
if abs(EW1_devi) < abs(EW3_devi):
symmetry_around_tension = 1
clr = 1
else:
symmetry_around_tension = 1
clr = 1
# net-implosion
elif EW2_devi >= 0 and sum([EW1, EW2, EW3]) < 0:
symmetry_around_tension = 0
clr = -1
if abs(EW1_devi) < abs(EW3_devi):
symmetry_around_tension = 1
clr = 1
# net-explosion
elif EW2_devi < 0 and sum([EW1, EW2, EW3]) > 0:
symmetry_around_tension = 1
clr = 1
if abs(EW1_devi) > abs(EW3_devi):
symmetry_around_tension = 0
clr = -1
# net-explosion
elif EW2_devi >= 0 and sum([EW1, EW2, EW3]) > 0:
symmetry_around_tension = 0
clr = -1
else:
# TODO check: this point should never be reached !!
pass
if abs(EW1_devi) < abs(EW3_devi):
symmetry_around_tension = 1
clr = 1
if 0: # EW2 > 0 :#or (EW2 > 0 and EW2_devi > 0) :
symmetry_around_tension = 0
clr = -1
if abs(EW1_devi) >= abs(EW3_devi):
symmetry_around_tension = 0
clr = -1
if 0: # EW2 < 0 :
symmetry_around_tension = 1
clr = 1
if (EW3 < 0 and np.trace(self._M) >= 0):
# reaching this point means, we have a serious problem, likely of
# numerical nature
print 'Houston, we have had a problem - check M !!!!!! \n' + \
'( Trace(M) > 0, but largest eigenvalue is still negative)'
raise MTError(' !! ')
if trace_M == 0:
# print 'pure deviatoric'
if EW2 == 0:
# print 'pure shear'
symmetry_around_tension = 1
clr = 1
elif 2 * abs(EW2) == abs(EW1) or 2 * abs(EW2) == abs(EW3):
# print 'pure clvd'
if abs(EW1) < EW3:
# print 'CLVD: symmetry around tension'
symmetry_around_tension = 1
clr = 1
else:
# print 'CLVD: symmetry around pressure'
symmetry_around_tension = 0
clr = -1
else:
# print 'mix of DC and CLVD'
if abs(EW1) < EW3:
# print 'symmetry around tension'
symmetry_around_tension = 1
clr = 1
else:
# print 'symmetry around pressure'
symmetry_around_tension = 0
clr = -1
# define order of eigenvectors and values according to symmetry axis
if symmetry_around_tension == 1:
EWs = EW3.copy()
EVs = EV3.copy()
EWh = EW1.copy()
EVh = EV1.copy()
else:
EWs = EW1.copy()
EVs = EV1.copy()
EWh = EW3.copy()
EVh = EV3.copy()
EWn = EW2
EVn = EV2
# build the basis system change matrix:
chng_basis = np.asmatrix(np.zeros((3, 3)))
# order of eigenvector's basis: (H,N,S)
chng_basis[:, 0] = EVh
chng_basis[:, 1] = EVn
chng_basis[:, 2] = EVs
# matrix for basis transformation
self._rotation_matrix = chng_basis
# collections of eigenvectors and eigenvalues
self._eigenvectors = [EVh, EVn, EVs]
self._eigenvalues = [EWh, EWn, EWs]
# principal axes
self._null_axis = EVn
self._t_axis = EV1
self._p_axis = EV3
# plotting order flag - important for plot in BeachBall class
self._plot_clr_order = clr
# collection of the faultplanes, given in strike, dip, slip-rake
self._faultplanes = self._find_faultplanes()
def _find_faultplanes(self):
"""
Sets the two angle-triples, describing the faultplanes of the
Double Couple, defined by the eigenvectors P and T of the
moment tensor object.
Define a reference Double Couple with strike = dip =
slip-rake = 0, the moment tensor object's DC is transformed
(rotated) w.r.t. this orientation. The respective rotation
matrix yields the first fault plane angles as the Euler
angles. After flipping the first reference plane by
multiplying the appropriate flip-matrix, one gets the second fault
plane's geometry.
All output angles are in degree
(
to check:
using Sebastian's conventions:
rotationsmatrix1 =
EV Matrix of M, but in order TNP (not as here PNT!!!)
reference-DC with strike, dip, rake = 0,0,0
in NED - form: M = 0,0,0,0,-1,0
the eigenvectors of this into a Matrix:
trafo-matrix2 = EV Matrix of Reference-DC in order TNP
effective Rotation matrix = (rotation_matrix1 * trafo-matrix2.T).T
by checking for det <0, make sure, if Matrix must be multiplied by -1
flip_matrix = 0,0,-1,0,-1,0,-1,0,0
other DC orientation obtained by flip * effective Rotation matrix
both matrices in matrix_2_euler
)
"""
# reference Double Couple (in NED basis)
# it has strike, dip, slip-rake = 0,0,0
refDC = np.matrix([[0., 0., -1.], [0., 0., 0.], [-1., 0., 0.]],
dtype=np.float)
refDC_evals, refDC_evecs = np.linalg.eigh(refDC)
# matrix which is turning from one fault plane to the other
flip_dc = np.matrix([[0., 0., -1.], [0., -1., 0.], [-1., 0., 0.]],
dtype=np.float)
# euler-tools need matrices of EV sorted in PNT:
pnt_sorted_EV_matrix = self._rotation_matrix.copy()
# resort only necessary, if abs(p) <= abs(t)
# print self._plot_clr_order
if self._plot_clr_order < 0:
pnt_sorted_EV_matrix[:, 0] = self._rotation_matrix[:, 2]
pnt_sorted_EV_matrix[:, 2] = self._rotation_matrix[:, 0]
# rotation matrix, describing the rotation of the eigenvector
# system of the input moment tensor into the eigenvector
# system of the reference Double Couple
rot_matrix_fp1 = (np.dot(pnt_sorted_EV_matrix, refDC_evecs.T)).T
# check, if rotation has right orientation
if np.linalg.det(rot_matrix_fp1) < 0.:
rot_matrix_fp1 *= -1.
# adding a rotation into the ambiguous system of the second fault plane
rot_matrix_fp2 = np.dot(flip_dc, rot_matrix_fp1)
fp1 = self._find_strike_dip_rake(rot_matrix_fp1)
fp2 = self._find_strike_dip_rake(rot_matrix_fp2)
return [fp1, fp2]
def _find_strike_dip_rake(self, rotation_matrix):
"""
Returns angles strike, dip, slip-rake in degrees, describing the fault
plane.
"""
(alpha, beta, gamma) = self._matrix_to_euler(rotation_matrix)
return (beta * rad2deg, alpha * rad2deg, -gamma * rad2deg)
def _cvec(self, x, y, z):
"""
Builds a column vector (matrix type) from a 3 tuple.
"""
return np.matrix([[x, y, z]], dtype=np.float).T
def _matrix_to_euler(self, rotmat):
"""
Returns three Euler angles alpha, beta, gamma (in radians) from a
rotation matrix.
"""
ex = self._cvec(1., 0., 0.)
ez = self._cvec(0., 0., 1.)
exs = rotmat.T * ex
ezs = rotmat.T * ez
enodes = np.cross(ez.T, ezs.T).T
if np.linalg.norm(enodes) < 1e-10:
enodes = exs
enodess = rotmat * enodes
cos_alpha = float((ez.T * ezs))
if cos_alpha > 1.:
cos_alpha = 1.
if cos_alpha < -1.:
cos_alpha = -1.
alpha = np.arccos(cos_alpha)
beta = np.mod(np.arctan2(enodes[1, 0], enodes[0, 0]), np.pi * 2.)
gamma = np.mod(-np.arctan2(enodess[1, 0], enodess[0, 0]), np.pi * 2.)
return self._unique_euler(alpha, beta, gamma)
def _unique_euler(self, alpha, beta, gamma):
"""