-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathseismic_PML_Collino_3D_isotropic_OpenMP.f90
1133 lines (882 loc) · 37.4 KB
/
seismic_PML_Collino_3D_isotropic_OpenMP.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!
! SEISMIC_CPML Version 1.1.1, November 2009.
!
! Copyright Universite de Pau et des Pays de l'Adour, CNRS and INRIA, France.
! Contributors: Dimitri Komatitsch, komatitsch aT lma DOT cnrs-mrs DOT fr
! and Roland Martin, roland DOT martin aT get DOT obs-mip DOT fr
!
! This software is a computer program whose purpose is to solve
! the three-dimensional isotropic elastic wave equation
! using a finite-difference method with classical split Perfectly Matched
! Layer (PML) conditions.
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along
! with this program; if not, write to the Free Software Foundation, Inc.,
! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
!
! The full text of the license is available in file "LICENSE".
program seismic_PML_Collino_3D_iso
! IMPORTANT : all our CPML codes work fine in single precision as well (which is significantly faster).
! If you want you can thus force automatic conversion to single precision at compile time
! or change all the declarations and constants in the code from double precision to single.
implicit none
!
! 3D explicit PML velocity-stress FD code based upon INRIA report for the 2D case:
!
! Francis Collino and Chrysoula Tsogka
! Application of the PML Absorbing Layer Model to the Linear
! Elastodynamic Problem in Anisotropic Heteregeneous Media
! INRIA Research Report RR-3471, August 1998
! http://hal.inria.fr/docs/00/07/32/19/PDF/RR-3471.pdf
!
! and
!
! @ARTICLE{CoTs01,
! author = {F. Collino and C. Tsogka},
! title = {Application of the {PML} absorbing layer model to the linear elastodynamic
! problem in anisotropic heterogeneous media},
! journal = {Geophysics},
! year = {2001},
! volume = {66},
! number = {1},
! pages = {294-307}}
!
! PML implemented in the three directions (x, y and z).
!
! Dimitri Komatitsch and Roland Martin, University of Pau, France, April 2007.
!
! The second-order staggered-grid formulation of Madariaga (1976) and Virieux (1986) is used.
!
! Parallel implementation based on OpenMP.
! Type for instance "setenv OMP_NUM_THREADS 4" before running in OpenMP if you want 4 tasks.
!
! To display the results as color images in the selected 2D cut plane, use:
!
! " display image*.gif " or " gimp image*.gif "
!
! or
!
! " montage -geometry +0+3 -rotate 90 -tile 1x21 image*Vx*.gif allfiles_Vx.gif "
! " montage -geometry +0+3 -rotate 90 -tile 1x21 image*Vy*.gif allfiles_Vy.gif "
! then " display allfiles_Vx.gif " or " gimp allfiles_Vx.gif "
! then " display allfiles_Vy.gif " or " gimp allfiles_Vy.gif "
!
! total number of grid points in each direction of the grid
integer, parameter :: NX = 101
integer, parameter :: NY = 641
integer, parameter :: NZ = 640
! size of a grid cell
double precision, parameter :: h = 10.d0
! thickness of the PML layer in grid points
integer, parameter :: NPOINTS_PML = 10
! P-velocity, S-velocity and density
double precision, parameter :: cp = 3300.d0
double precision, parameter :: cs = cp / 1.732d0
double precision, parameter :: rho = 2800.d0
double precision, parameter :: mu = rho*cs*cs
double precision, parameter :: lambda = rho*(cp*cp - 2.d0*cs*cs)
double precision, parameter :: lambda_plus_two_mu = rho*cp*cp
! total number of time steps
integer, parameter :: NSTEP = 2500
! time step in seconds
double precision, parameter :: DELTAT = 1.6d-3
double precision, parameter :: ONE_OVER_DELTAT = 1.d0 / DELTAT
! parameters for the source
double precision, parameter :: f0 = 7.d0
double precision, parameter :: t0 = 1.20d0 / f0
double precision, parameter :: factor = 1.d7
! source
! if one wants to put the source at another location, one can invert the formulas below
! and define the grid point (ISOURCE, JSOURCE, KSOURCE) to use as:
! double precision, parameter :: xsource = ...put here the coordinate you want...
! double precision, parameter :: ysource = ...put here the coordinate you want...
! double precision, parameter :: zsource = ...put here the coordinate you want...
! integer, parameter :: ISOURCE = xsource / h + 1
! integer, parameter :: JSOURCE = ysource / h + 1
! integer, parameter :: KSOURCE = zsource / h + 1
! (h is the size of mesh cells)
integer, parameter :: ISOURCE = NX - 2*NPOINTS_PML - 1
integer, parameter :: JSOURCE = 2 * NY / 3 + 1
integer, parameter :: KSOURCE = NZ / 2
double precision, parameter :: xsource = (ISOURCE - 1) * h
double precision, parameter :: ysource = (JSOURCE - 1) * h
double precision, parameter :: zsource = (KSOURCE - 1) * h
! angle of source force clockwise with respect to vertical (Y) axis
double precision, parameter :: ANGLE_FORCE = 135.d0
! receivers
integer, parameter :: NREC = 2
double precision, parameter :: xdeb = xsource - 100.d0 ! first receiver x in meters
double precision, parameter :: ydeb = 2300.d0 ! first receiver y in meters
double precision, parameter :: zdeb = zsource ! first receiver y in meters
double precision, parameter :: xfin = xsource ! last receiver x in meters
double precision, parameter :: yfin = 300.d0 ! last receiver y in meters
double precision, parameter :: zfin = zsource ! last receiver y in meters
! display information on the screen from time to time
integer, parameter :: IT_DISPLAY = 100
! value of PI
double precision, parameter :: PI = 3.141592653589793238462643d0
! conversion from degrees to radians
double precision, parameter :: DEGREES_TO_RADIANS = PI / 180.d0
! zero
double precision, parameter :: ZERO = 0.d0
! large value for maximum
double precision, parameter :: HUGEVAL = 1.d+30
! velocity threshold above which we consider that the code became unstable
double precision, parameter :: STABILITY_THRESHOLD = 1.d+25
! main arrays
double precision, dimension(NX,NY,NZ) :: vx_1,vx_2,vx_3, &
vy_1,vy_2,vy_3, &
vz_1,vz_2,vz_3, &
sigmaxx_1,sigmaxx_2,sigmaxx_3, &
sigmayy_1,sigmayy_2,sigmayy_3, &
sigmazz_1,sigmazz_2,sigmazz_3, &
sigmaxy_1,sigmaxy_2, &
sigmaxz_1,sigmaxz_3, &
sigmayz_2,sigmayz_3
double precision, dimension(NX) :: dx_over_two,dx_half_over_two
double precision, dimension(NY) :: dy_over_two,dy_half_over_two
double precision, dimension(NZ) :: dz_over_two,dz_half_over_two
! for the source
double precision a,t,force_x,force_y,force_z,source_term
! for receivers
double precision xspacerec,yspacerec,zspacerec,distval,dist
integer, dimension(NREC) :: ix_rec,iy_rec,iz_rec
double precision, dimension(NREC) :: xrec,yrec,zrec
double precision, dimension(NSTEP,NREC) :: sisvx,sisvy
! for evolution of total energy in the medium
double precision :: epsilon_xx,epsilon_yy,epsilon_zz,epsilon_xy,epsilon_xz,epsilon_yz
double precision :: sigmaxx_total,sigmayy_total,sigmazz_total
double precision :: sigmaxy_total,sigmaxz_total,sigmayz_total
double precision :: total_energy_kinetic,total_energy_potential
double precision, dimension(NSTEP) :: total_energy
integer :: i,j,k,it,irec,iplane
double precision :: xval,delta,xoriginleft,xoriginright,rcoef,d0,Vsolidnorm,Courant_number,value_dx,value_dy,value_dz,d
! timer to count elapsed time
character(len=8) datein
character(len=10) timein
character(len=5) :: zone
integer, dimension(8) :: time_values
integer ihours,iminutes,iseconds,int_tCPU
double precision :: time_start,time_end,tCPU
! names of the time stamp files
character(len=150) outputname
! main I/O file
integer, parameter :: IOUT = 41
!---
!--- program starts here
!---
!--- define profile of absorption in PML region
! thickness of the layer in meters
delta = NPOINTS_PML * h
! reflection coefficient (INRIA report section 6.1) http://hal.inria.fr/docs/00/07/32/19/PDF/RR-3471.pdf
Rcoef = 0.001d0
! compute d0 from INRIA report section 6.1 http://hal.inria.fr/docs/00/07/32/19/PDF/RR-3471.pdf
d0 = 3.d0 * cp * log(1.d0/Rcoef) / (2.d0 * delta)
print *,'d0 = ',d0
print *
! origin of the PML layer (position of right edge minus thickness, in meters)
xoriginleft = delta
xoriginright = (NX-1)*h - delta
do i=1,NX
xval = h*dble(i-1)
if (xval < xoriginleft) then
dx_over_two(i) = d0 * ((xoriginleft-xval)/delta)**2
dx_half_over_two(i) = d0 * ((xoriginleft-xval-h/2.d0)/delta)**2
! fix problem with dx_half_over_two() exactly on the edge
else if (xval >= 0.9999d0*xoriginright) then
dx_over_two(i) = d0 * ((xval-xoriginright)/delta)**2
dx_half_over_two(i) = d0 * ((xval+h/2.d0-xoriginright)/delta)**2
else
dx_over_two(i) = 0.d0
dx_half_over_two(i) = 0.d0
endif
enddo
! divide the whole profile by two once and for all
dx_over_two(:) = dx_over_two(:) / 2.d0
dx_half_over_two(:) = dx_half_over_two(:) / 2.d0
! origin of the PML layer (position of right edge minus thickness, in meters)
xoriginleft = delta
xoriginright = (NY-1)*h - delta
do j=1,NY
xval = h*dble(j-1)
if (xval < xoriginleft) then
dy_over_two(j) = d0 * ((xoriginleft-xval)/delta)**2
dy_half_over_two(j) = d0 * ((xoriginleft-xval-h/2.d0)/delta)**2
! fix problem with dy_half_over_two() exactly on the edge
else if (xval >= 0.9999d0*xoriginright) then
dy_over_two(j) = d0 * ((xval-xoriginright)/delta)**2
dy_half_over_two(j) = d0 * ((xval+h/2.d0-xoriginright)/delta)**2
else
dy_over_two(j) = 0.d0
dy_half_over_two(j) = 0.d0
endif
enddo
! divide the whole profile by two once and for all
dy_over_two(:) = dy_over_two(:) / 2.d0
dy_half_over_two(:) = dy_half_over_two(:) / 2.d0
! origin of the PML layer (position of right edge minus thickness, in meters)
xoriginleft = delta
xoriginright = (NZ-1)*h - delta
do k=1,NZ
xval = h*dble(k-1)
if (xval < xoriginleft) then
dz_over_two(k) = d0 * ((xoriginleft-xval)/delta)**2
dz_half_over_two(k) = d0 * ((xoriginleft-xval-h/2.d0)/delta)**2
! fix problem with dy_half_over_two() exactly on the edge
else if (xval >= 0.9999d0*xoriginright) then
dz_over_two(k) = d0 * ((xval-xoriginright)/delta)**2
dz_half_over_two(k) = d0 * ((xval+h/2.d0-xoriginright)/delta)**2
else
dz_over_two(k) = 0.d0
dz_half_over_two(k) = 0.d0
endif
enddo
! divide the whole profile by two once and for all
dz_over_two(:) = dz_over_two(:) / 2.d0
dz_half_over_two(:) = dz_half_over_two(:) / 2.d0
! print position of the source
print *
print *,'Position of the source:'
print *
print *,'x = ',xsource
print *,'y = ',ysource
print *,'z = ',zsource
print *
! define location of receivers
print *
print *,'There are ',nrec,' receivers'
print *
xspacerec = (xfin-xdeb) / dble(NREC-1)
yspacerec = (yfin-ydeb) / dble(NREC-1)
zspacerec = (zfin-zdeb) / dble(NREC-1)
do irec=1,nrec
xrec(irec) = xdeb + dble(irec-1)*xspacerec
yrec(irec) = ydeb + dble(irec-1)*yspacerec
zrec(irec) = zdeb + dble(irec-1)*zspacerec
enddo
! find closest grid point for each receiver
do irec=1,nrec
dist = HUGEVAL
do k = 1,NZ
do j = 1,NY
do i = 1,NX
distval = sqrt((h*dble(i-1) - xrec(irec))**2 + (h*dble(j-1) - yrec(irec))**2 + (h*dble(k-1) - zrec(irec))**2)
if (distval < dist) then
dist = distval
ix_rec(irec) = i
iy_rec(irec) = j
iz_rec(irec) = k
endif
enddo
enddo
enddo
print *,'receiver ',irec,' x_target,y_target,z_target = ',xrec(irec),yrec(irec),zrec(irec)
print *,'closest grid point found at distance ',dist,' in i,j,k = ',ix_rec(irec),iy_rec(irec),iz_rec(irec)
print *
enddo
! check the Courant stability condition for the explicit time scheme
! R. Courant et K. O. Friedrichs et H. Lewy (1928)
Courant_number = cp * DELTAT / h
print *,'Courant number is ',Courant_number
print *
if (Courant_number > 1.d0/sqrt(3.d0)) stop 'time step is too large, simulation will be unstable'
! suppress old files (can be commented out if "call system" is missing in your compiler)
! call system('rm -f Vx_*.dat Vy_*.dat Vz_*.dat image*.pnm image*.gif timestamp*')
! initialize arrays
vx_1(:,:,:) = 0.d0
vy_1(:,:,:) = 0.d0
vz_1(:,:,:) = 0.d0
vx_2(:,:,:) = 0.d0
vy_2(:,:,:) = 0.d0
vz_2(:,:,:) = 0.d0
vx_3(:,:,:) = 0.d0
vy_3(:,:,:) = 0.d0
vz_3(:,:,:) = 0.d0
sigmaxx_1(:,:,:) = 0.d0
sigmayy_1(:,:,:) = 0.d0
sigmazz_1(:,:,:) = 0.d0
sigmaxy_1(:,:,:) = 0.d0
sigmaxz_1(:,:,:) = 0.d0
sigmaxx_2(:,:,:) = 0.d0
sigmayy_2(:,:,:) = 0.d0
sigmazz_2(:,:,:) = 0.d0
sigmaxy_2(:,:,:) = 0.d0
sigmayz_2(:,:,:) = 0.d0
sigmaxx_3(:,:,:) = 0.d0
sigmayy_3(:,:,:) = 0.d0
sigmazz_3(:,:,:) = 0.d0
sigmaxz_3(:,:,:) = 0.d0
sigmayz_3(:,:,:) = 0.d0
! initialize seismograms
sisvx(:,:) = 0.d0
sisvy(:,:) = 0.d0
! initialize total energy
total_energy(:) = 0.d0
call date_and_time(datein,timein,zone,time_values)
! time_values(3): day of the month
! time_values(5): hour of the day
! time_values(6): minutes of the hour
! time_values(7): seconds of the minute
! time_values(8): milliseconds of the second
! this fails if we cross the end of the month
time_start = 86400.d0*time_values(3) + 3600.d0*time_values(5) + &
60.d0*time_values(6) + time_values(7) + time_values(8) / 1000.d0
!---
!--- beginning of time loop
!---
do it = 1,NSTEP
print *,'it = ',it
!----------------------
! compute stress sigma
!----------------------
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k,d,value_dx,value_dy,value_dz) &
!$OMP SHARED(vx_1,vx_2,vx_3,vy_1,vy_2,vy_3,vz_1,vz_2,vz_3,sigmaxx_1,sigmaxx_2,sigmaxx_3, &
!$OMP sigmayy_1,sigmayy_2,sigmayy_3,sigmazz_1,sigmazz_2,sigmazz_3,dx_half_over_two,dy_over_two,dz_over_two)
do k=2,NZ
do j = 2,NY
do i = 1,NX-1
value_dx = (vx_1(i+1,j,k) - vx_1(i,j,k)) / h &
+ (vx_2(i+1,j,k) - vx_2(i,j,k)) / h &
+ (vx_3(i+1,j,k) - vx_3(i,j,k)) / h
value_dy = (vy_1(i,j,k) - vy_1(i,j-1,k)) / h &
+ (vy_2(i,j,k) - vy_2(i,j-1,k)) / h &
+ (vy_3(i,j,k) - vy_3(i,j-1,k)) / h
value_dz = (vz_1(i,j,k) - vz_1(i,j,k-1)) / h &
+ (vz_2(i,j,k) - vz_2(i,j,k-1)) / h &
+ (vz_3(i,j,k) - vz_3(i,j,k-1)) / h
d = dx_half_over_two(i)
sigmaxx_1(i,j,k) = ( sigmaxx_1(i,j,k)*(ONE_OVER_DELTAT - d) + lambda_plus_two_mu * value_dx ) / (ONE_OVER_DELTAT + d)
sigmayy_1(i,j,k) = ( sigmayy_1(i,j,k)*(ONE_OVER_DELTAT - d) + lambda * value_dx ) / (ONE_OVER_DELTAT + d)
sigmazz_1(i,j,k) = ( sigmazz_1(i,j,k)*(ONE_OVER_DELTAT - d) + lambda * value_dx ) / (ONE_OVER_DELTAT + d)
d = dy_over_two(j)
sigmaxx_2(i,j,k) = ( sigmaxx_2(i,j,k)*(ONE_OVER_DELTAT - d) + lambda * value_dy ) / (ONE_OVER_DELTAT + d)
sigmayy_2(i,j,k) = ( sigmayy_2(i,j,k)*(ONE_OVER_DELTAT - d) + lambda_plus_two_mu * value_dy ) / (ONE_OVER_DELTAT + d)
sigmazz_2(i,j,k) = ( sigmazz_2(i,j,k)*(ONE_OVER_DELTAT - d) + lambda * value_dy ) / (ONE_OVER_DELTAT + d)
d = dz_over_two(k)
sigmaxx_3(i,j,k) = ( sigmaxx_3(i,j,k)*(ONE_OVER_DELTAT - d) + lambda * value_dz ) / (ONE_OVER_DELTAT + d)
sigmayy_3(i,j,k) = ( sigmayy_3(i,j,k)*(ONE_OVER_DELTAT - d) + lambda * value_dz ) / (ONE_OVER_DELTAT + d)
sigmazz_3(i,j,k) = ( sigmazz_3(i,j,k)*(ONE_OVER_DELTAT - d) + lambda_plus_two_mu * value_dz ) / (ONE_OVER_DELTAT + d)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k,d,value_dx,value_dy) SHARED(vx_1,vx_2,vx_3,vy_1, &
!$OMP vy_2,vy_3,sigmaxy_1,sigmaxy_2,dy_half_over_two,dx_over_two)
do k=1,NZ
do j = 1,NY-1
do i = 2,NX
value_dx = (vy_1(i,j,k) - vy_1(i-1,j,k)) / h &
+ (vy_2(i,j,k) - vy_2(i-1,j,k)) / h &
+ (vy_3(i,j,k) - vy_3(i-1,j,k)) / h
value_dy = (vx_1(i,j+1,k) - vx_1(i,j,k)) / h &
+ (vx_2(i,j+1,k) - vx_2(i,j,k)) / h &
+ (vx_3(i,j+1,k) - vx_3(i,j,k)) / h
d = dx_over_two(i)
sigmaxy_1(i,j,k) = ( sigmaxy_1(i,j,k)*(ONE_OVER_DELTAT - d) + mu * value_dx ) / (ONE_OVER_DELTAT + d)
d = dy_half_over_two(j)
sigmaxy_2(i,j,k) = ( sigmaxy_2(i,j,k)*(ONE_OVER_DELTAT - d) + mu * value_dy ) / (ONE_OVER_DELTAT + d)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k,d,value_dx,value_dz) SHARED(vx_1,vx_2,vx_3, &
!$OMP vz_1,vz_2,vz_3,sigmaxz_1,sigmaxz_3,dz_half_over_two,dx_over_two)
do k=1,NZ-1
do j = 1,NY
do i = 2,NX
value_dx = (vz_1(i,j,k) - vz_1(i-1,j,k)) / h &
+ (vz_2(i,j,k) - vz_2(i-1,j,k)) / h &
+ (vz_3(i,j,k) - vz_3(i-1,j,k)) / h
value_dz = (vx_1(i,j,k+1) - vx_1(i,j,k)) / h &
+ (vx_2(i,j,k+1) - vx_2(i,j,k)) / h &
+ (vx_3(i,j,k+1) - vx_3(i,j,k)) / h
d = dx_over_two(i)
sigmaxz_1(i,j,k) = ( sigmaxz_1(i,j,k)*(ONE_OVER_DELTAT - d) + mu * value_dx ) / (ONE_OVER_DELTAT + d)
d = dz_half_over_two(k)
sigmaxz_3(i,j,k) = ( sigmaxz_3(i,j,k)*(ONE_OVER_DELTAT - d) + mu * value_dz ) / (ONE_OVER_DELTAT + d)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k,d,value_dy,value_dz) SHARED(vy_1,vy_2,vy_3, &
!$OMP vz_1,vz_2,vz_3,sigmayz_2,sigmayz_3,dy_half_over_two,dz_half_over_two)
do k=1,NZ-1
do j = 1,NY-1
do i = 1,NX
value_dy = (vz_1(i,j+1,k) - vz_1(i,j,k)) / h &
+ (vz_2(i,j+1,k) - vz_2(i,j,k)) / h &
+ (vz_3(i,j+1,k) - vz_3(i,j,k)) / h
value_dz = (vy_1(i,j,k+1) - vy_1(i,j,k)) / h &
+ (vy_2(i,j,k+1) - vy_2(i,j,k)) / h &
+ (vy_3(i,j,k+1) - vy_3(i,j,k)) / h
d = dy_half_over_two(j)
sigmayz_2(i,j,k) = ( sigmayz_2(i,j,k)*(ONE_OVER_DELTAT - d) + mu * value_dy ) / (ONE_OVER_DELTAT + d)
d = dz_half_over_two(k)
sigmayz_3(i,j,k) = ( sigmayz_3(i,j,k)*(ONE_OVER_DELTAT - d) + mu * value_dz ) / (ONE_OVER_DELTAT + d)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!------------------
! compute velocity
!------------------
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k,d,value_dx,value_dy,value_dz) SHARED(vx_1,vx_2, &
!$OMP vx_3,sigmaxx_1,sigmaxx_2,sigmaxx_3,sigmaxy_1,sigmaxy_2,sigmaxz_1,sigmaxz_3,dx_over_two,dy_over_two,dz_over_two)
do k = 2,NZ
do j = 2,NY
do i = 2,NX
value_dx = (sigmaxx_1(i,j,k) - sigmaxx_1(i-1,j,k)) / h &
+ (sigmaxx_2(i,j,k) - sigmaxx_2(i-1,j,k)) / h &
+ (sigmaxx_3(i,j,k) - sigmaxx_3(i-1,j,k)) / h
value_dy = (sigmaxy_1(i,j,k) - sigmaxy_1(i,j-1,k)) / h &
+ (sigmaxy_2(i,j,k) - sigmaxy_2(i,j-1,k)) / h
value_dz = (sigmaxz_1(i,j,k) - sigmaxz_1(i,j,k-1)) / h &
+ (sigmaxz_3(i,j,k) - sigmaxz_3(i,j,k-1)) / h
d = dx_over_two(i)
vx_1(i,j,k) = ( vx_1(i,j,k)*(ONE_OVER_DELTAT - d) + value_dx / rho ) / (ONE_OVER_DELTAT + d)
d = dy_over_two(j)
vx_2(i,j,k) = ( vx_2(i,j,k)*(ONE_OVER_DELTAT - d) + value_dy / rho ) / (ONE_OVER_DELTAT + d)
d = dz_over_two(k)
vx_3(i,j,k) = ( vx_3(i,j,k)*(ONE_OVER_DELTAT - d) + value_dz / rho ) / (ONE_OVER_DELTAT + d)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k,d,value_dx,value_dy,value_dz) SHARED(vy_1,vy_2, &
!$OMP vy_3,sigmayy_1,sigmayy_2,sigmayy_3,sigmaxy_1,sigmaxy_2,sigmayz_2,sigmayz_3,dx_half_over_two,dy_half_over_two,dz_over_two)
do k = 2,NZ
do j = 1,NY-1
do i = 1,NX-1
value_dx = (sigmaxy_1(i+1,j,k) - sigmaxy_1(i,j,k)) / h &
+ (sigmaxy_2(i+1,j,k) - sigmaxy_2(i,j,k)) / h
value_dy = (sigmayy_1(i,j+1,k) - sigmayy_1(i,j,k)) / h &
+ (sigmayy_2(i,j+1,k) - sigmayy_2(i,j,k)) / h &
+ (sigmayy_3(i,j+1,k) - sigmayy_3(i,j,k)) / h
value_dz = (sigmayz_2(i,j,k) - sigmayz_2(i,j,k-1)) / h &
+ (sigmayz_3(i,j,k) - sigmayz_3(i,j,k-1)) / h
d = dx_half_over_two(i)
vy_1(i,j,k) = ( vy_1(i,j,k)*(ONE_OVER_DELTAT - d) + value_dx / rho ) / (ONE_OVER_DELTAT + d)
d = dy_half_over_two(j)
vy_2(i,j,k) = ( vy_2(i,j,k)*(ONE_OVER_DELTAT - d) + value_dy / rho ) / (ONE_OVER_DELTAT + d)
d = dz_over_two(k)
vy_3(i,j,k) = ( vy_3(i,j,k)*(ONE_OVER_DELTAT - d) + value_dz / rho ) / (ONE_OVER_DELTAT + d)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k,d,value_dx,value_dy,value_dz) SHARED(vz_1,vz_2, &
!$OMP vz_3,sigmazz_1,sigmazz_2,sigmazz_3,sigmaxz_1,sigmaxz_3,sigmayz_2,sigmayz_3,dx_half_over_two,dy_over_two,dz_half_over_two)
do k = 1,NZ-1
do j = 2,NY
do i = 1,NX-1
value_dx = (sigmaxz_1(i+1,j,k) - sigmaxz_1(i,j,k)) / h &
+ (sigmaxz_3(i+1,j,k) - sigmaxz_3(i,j,k)) / h
value_dy = (sigmayz_2(i,j,k) - sigmayz_2(i,j-1,k)) / h &
+ (sigmayz_3(i,j,k) - sigmayz_3(i,j-1,k)) / h
value_dz = (sigmazz_1(i,j,k+1) - sigmazz_1(i,j,k)) / h &
+ (sigmazz_2(i,j,k+1) - sigmazz_2(i,j,k)) / h &
+ (sigmazz_3(i,j,k+1) - sigmazz_3(i,j,k)) / h
d = dx_half_over_two(i)
vz_1(i,j,k) = ( vz_1(i,j,k)*(ONE_OVER_DELTAT - d) + value_dx / rho ) / (ONE_OVER_DELTAT + d)
d = dy_over_two(j)
vz_2(i,j,k) = ( vz_2(i,j,k)*(ONE_OVER_DELTAT - d) + value_dy / rho ) / (ONE_OVER_DELTAT + d)
d = dz_half_over_two(k)
vz_3(i,j,k) = ( vz_3(i,j,k)*(ONE_OVER_DELTAT - d) + value_dz / rho ) / (ONE_OVER_DELTAT + d)
enddo
enddo
enddo
!$OMP END PARALLEL DO
! add the source (force vector located at a given grid point)
a = pi*pi*f0*f0
t = dble(it-1)*DELTAT
! Gaussian
! source_term = factor * exp(-a*(t-t0)**2)
! first derivative of a Gaussian
source_term = - factor * 2.d0*a*(t-t0)*exp(-a*(t-t0)**2)
! Ricker source time function (second derivative of a Gaussian)
! source_term = factor * (1.d0 - 2.d0*a*(t-t0)**2)*exp(-a*(t-t0)**2)
force_x = sin(ANGLE_FORCE * DEGREES_TO_RADIANS) * source_term
force_y = cos(ANGLE_FORCE * DEGREES_TO_RADIANS) * source_term
force_z = 0.d0
! add the source to one of the two components of the split field
vx_1(ISOURCE,JSOURCE,KSOURCE) = vx_1(ISOURCE,JSOURCE,KSOURCE) + force_x * DELTAT / rho
vy_1(ISOURCE,JSOURCE,KSOURCE) = vy_1(ISOURCE,JSOURCE,KSOURCE) + force_y * DELTAT / rho
! implement Dirichlet boundary conditions on the six edges of the grid
!$OMP PARALLEL WORKSHARE
! xmin
vx_1(1,:,:) = 0.d0
vy_1(1,:,:) = 0.d0
vz_1(1,:,:) = 0.d0
vx_2(1,:,:) = 0.d0
vy_2(1,:,:) = 0.d0
vz_2(1,:,:) = 0.d0
vx_3(1,:,:) = 0.d0
vy_3(1,:,:) = 0.d0
vz_3(1,:,:) = 0.d0
! xmax
vx_1(NX,:,:) = 0.d0
vy_1(NX,:,:) = 0.d0
vz_1(NX,:,:) = 0.d0
vx_2(NX,:,:) = 0.d0
vy_2(NX,:,:) = 0.d0
vz_2(NX,:,:) = 0.d0
vx_3(NX,:,:) = 0.d0
vy_3(NX,:,:) = 0.d0
vz_3(NX,:,:) = 0.d0
! ymin
vx_1(:,1,:) = 0.d0
vy_1(:,1,:) = 0.d0
vz_1(:,1,:) = 0.d0
vx_2(:,1,:) = 0.d0
vy_2(:,1,:) = 0.d0
vz_2(:,1,:) = 0.d0
vx_3(:,1,:) = 0.d0
vy_3(:,1,:) = 0.d0
vz_3(:,1,:) = 0.d0
! ymax
vx_1(:,NY,:) = 0.d0
vy_1(:,NY,:) = 0.d0
vz_1(:,NY,:) = 0.d0
vx_2(:,NY,:) = 0.d0
vy_2(:,NY,:) = 0.d0
vz_2(:,NY,:) = 0.d0
vx_3(:,NY,:) = 0.d0
vy_3(:,NY,:) = 0.d0
vz_3(:,NY,:) = 0.d0
! zmin
vx_1(:,:,1) = 0.d0
vy_1(:,:,1) = 0.d0
vz_1(:,:,1) = 0.d0
vx_2(:,:,1) = 0.d0
vy_2(:,:,1) = 0.d0
vz_2(:,:,1) = 0.d0
vx_3(:,:,1) = 0.d0
vy_3(:,:,1) = 0.d0
vz_3(:,:,1) = 0.d0
! zmax
vx_1(:,:,NZ) = 0.d0
vy_1(:,:,NZ) = 0.d0
vz_1(:,:,NZ) = 0.d0
vx_2(:,:,NZ) = 0.d0
vy_2(:,:,NZ) = 0.d0
vz_2(:,:,NZ) = 0.d0
vx_3(:,:,NZ) = 0.d0
vy_3(:,:,NZ) = 0.d0
vz_3(:,:,NZ) = 0.d0
!$OMP END PARALLEL WORKSHARE
! store seismograms
do irec = 1,NREC
sisvx(it,irec) = vx_1(ix_rec(irec),iy_rec(irec),iz_rec(irec)) + &
vx_2(ix_rec(irec),iy_rec(irec),iz_rec(irec)) + vx_3(ix_rec(irec),iy_rec(irec),iz_rec(irec))
sisvy(it,irec) = vy_1(ix_rec(irec),iy_rec(irec),iz_rec(irec)) + &
vy_2(ix_rec(irec),iy_rec(irec),iz_rec(irec)) + vy_3(ix_rec(irec),iy_rec(irec),iz_rec(irec))
enddo
! compute total energy in the medium (without the PML layers)
total_energy_kinetic = ZERO
total_energy_potential = ZERO
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(i,j,k,sigmaxx_total,sigmayy_total, &
!$OMP sigmazz_total,sigmaxy_total,sigmaxz_total,sigmayz_total,epsilon_xx,epsilon_yy,epsilon_zz,epsilon_xy,epsilon_xz,epsilon_yz) &
!$OMP SHARED(vx_1,vx_2,vx_3,vy_1,vy_2,vy_3,vz_1,vz_2,vz_3,sigmaxx_1,sigmaxx_2, &
!$OMP sigmaxx_3,sigmayy_1,sigmayy_2,sigmayy_3,sigmazz_1,sigmazz_2,sigmazz_3, &
!$OMP sigmaxy_1,sigmaxy_2,sigmaxz_1,sigmaxz_3,sigmayz_2,sigmayz_3) REDUCTION(+:total_energy_kinetic,total_energy_potential)
do k = NPOINTS_PML+1, NZ-NPOINTS_PML
do j = NPOINTS_PML+1, NY-NPOINTS_PML
do i = NPOINTS_PML+1, NX-NPOINTS_PML
! compute kinetic energy first, defined as 1/2 rho ||v||^2
! in principle we should use rho_half_x_half_y instead of rho for vy
! in order to interpolate density at the right location in the staggered grid cell
! but in a homogeneous medium we can safely ignore it
total_energy_kinetic = total_energy_kinetic + 0.5d0 * rho*( &
(vx_1(i,j,k) + vx_2(i,j,k) + vx_3(i,j,k))**2 + &
(vy_1(i,j,k) + vy_2(i,j,k) + vy_3(i,j,k))**2 + &
(vz_1(i,j,k) + vz_2(i,j,k) + vz_3(i,j,k))**2)
! add potential energy, defined as 1/2 epsilon_ij sigma_ij
! in principle we should interpolate the medium parameters at the right location
! in the staggered grid cell but in a homogeneous medium we can safely ignore it
! compute total field from split components
sigmaxx_total = sigmaxx_1(i,j,k) + sigmaxx_2(i,j,k) + sigmaxx_3(i,j,k)
sigmayy_total = sigmayy_1(i,j,k) + sigmayy_2(i,j,k) + sigmayy_3(i,j,k)
sigmazz_total = sigmazz_1(i,j,k) + sigmazz_2(i,j,k) + sigmazz_3(i,j,k)
sigmaxy_total = sigmaxy_1(i,j,k) + sigmaxy_2(i,j,k)
sigmaxz_total = sigmaxz_1(i,j,k) + sigmaxz_3(i,j,k)
sigmayz_total = sigmayz_2(i,j,k) + sigmayz_3(i,j,k)
epsilon_xx = (2.d0*(lambda + mu) * sigmaxx_total - lambda * sigmayy_total -lambda*sigmazz_total) / &
(2.d0 * mu * (3.d0*lambda + 2.d0*mu))
epsilon_yy = (2.d0*(lambda + mu) * sigmayy_total - lambda * sigmaxx_total -lambda*sigmazz_total) / &
(2.d0 * mu * (3.d0*lambda + 2.d0*mu))
epsilon_zz = (2.d0*(lambda + mu) * sigmazz_total - lambda * sigmaxx_total -lambda*sigmayy_total) / &
(2.d0 * mu * (3.d0*lambda + 2.d0*mu))
epsilon_xy = sigmaxy_total / (2.d0 * mu)
epsilon_xz = sigmaxz_total / (2.d0 * mu)
epsilon_yz = sigmayz_total / (2.d0 * mu)
total_energy_potential = total_energy_potential + &
0.5d0 * (epsilon_xx * sigmaxx_total + epsilon_yy * sigmayy_total + &
epsilon_yy * sigmayy_total+ 2.d0 * epsilon_xy * sigmaxy_total + &
2.d0*epsilon_xz * sigmaxz_total+2.d0*epsilon_yz * sigmayz_total)
enddo
enddo
enddo
!$OMP END PARALLEL DO
total_energy(it) = total_energy_kinetic + total_energy_potential
! output information
if (mod(it,IT_DISPLAY) == 0 .or. it == 5) then
Vsolidnorm = maxval(sqrt((vx_1 + vx_2 + vx_3)**2 + (vy_1 + vy_2 + vy_3)**2+(vz_1 + vz_2 + vz_3)**2))
print *,'Time step # ',it,' out of ',NSTEP
print *,'Time: ',sngl((it-1)*DELTAT),' seconds'
print *,'Max norm velocity vector V (m/s) = ',Vsolidnorm
print *,'Total energy = ',total_energy(it)
! check stability of the code, exit if unstable
if (Vsolidnorm > STABILITY_THRESHOLD) stop 'code became unstable and blew up'
iplane=1
! count elapsed wall-clock time
call date_and_time(datein,timein,zone,time_values)
! time_values(3): day of the month
! time_values(5): hour of the day
! time_values(6): minutes of the hour
! time_values(7): seconds of the minute
! time_values(8): milliseconds of the second
! this fails if we cross the end of the month
time_end = 86400.d0*time_values(3) + 3600.d0*time_values(5) + &
60.d0*time_values(6) + time_values(7) + time_values(8) / 1000.d0
! elapsed time since beginning of the simulation
tCPU = time_end - time_start
int_tCPU = int(tCPU)
ihours = int_tCPU / 3600
iminutes = (int_tCPU - 3600*ihours) / 60
iseconds = int_tCPU - 3600*ihours - 60*iminutes
write(*,*) 'Elapsed time in seconds = ',tCPU
write(*,"(' Elapsed time in hh:mm:ss = ',i4,' h ',i2.2,' m ',i2.2,' s')") ihours,iminutes,iseconds
write(*,*) 'Mean elapsed time per time step in seconds = ',tCPU/dble(it)
write(*,*)
! write time stamp file to give information about progression of simulation
write(outputname,"('timestamp',i6.6)") it
open(unit=IOUT,file=outputname,status='unknown')
write(IOUT,*) 'Time step # ',it
write(IOUT,*) 'Time: ',sngl((it-1)*DELTAT),' seconds'
write(IOUT,*) 'Max norm velocity vector V (m/s) = ',Vsolidnorm
write(IOUT,*) 'Total energy = ',total_energy(it)
write(IOUT,*) 'Elapsed time in seconds = ',tCPU
write(IOUT,"(' Elapsed time in hh:mm:ss = ',i4,' h ',i2.2,' m ',i2.2,' s')") ihours,iminutes,iseconds
write(IOUT,*) 'Mean elapsed time per time step in seconds = ',tCPU/dble(it)
close(IOUT)
! save seismograms
print *,'saving seismograms'
print *
call write_seismograms(sisvx,sisvy,NSTEP,NREC,DELTAT)
! here we represent the cut plane that is in the middle of the model along the Z direction, in NZ/2
call create_color_image(vx_1(:,:,NZ/2) + vx_2(:,:,NZ/2) + vx_3(:,:,NZ/2),NX,NY,it,ISOURCE,JSOURCE,ix_rec,iy_rec,nrec, &
NPOINTS_PML,.true.,.true.,.true.,.true.,1)
call create_color_image(vy_1(:,:,NZ/2) + vy_2(:,:,NZ/2) +vy_3(:,:,NZ/2),NX,NY,it,ISOURCE,JSOURCE,ix_rec,iy_rec,nrec, &
NPOINTS_PML,.true.,.true.,.true.,.true.,2)
endif
enddo ! end of time loop
! save seismograms
call write_seismograms(sisvx,sisvy,NSTEP,NREC,DELTAT)
! save total energy
open(unit=20,file='energy.dat',status='unknown')
do it = 1,NSTEP
write(20,*) sngl(dble(it-1)*DELTAT),total_energy(it)
enddo
close(20)
! create script for Gnuplot for total energy
open(unit=20,file='plot_energy',status='unknown')
write(20,*) '# set term x11'
write(20,*) 'set term postscript landscape monochrome dashed "Helvetica" 22'
write(20,*)
write(20,*) 'set xlabel "Time (s)"'
write(20,*) 'set ylabel "Total energy"'
write(20,*)
write(20,*) 'set output "collino3D_total_energy_semilog.eps"'
write(20,*) 'set logscale y'
write(20,*) 'plot "energy.dat" t ''Total energy'' w l lc 1'
write(20,*) 'pause -1 "Hit any key..."'
write(20,*)
close(20)
! create script for Gnuplot
open(unit=20,file='plotgnu',status='unknown')
write(20,*) 'set term x11'
write(20,*) '# set term postscript landscape monochrome dashed "Helvetica" 22'
write(20,*)
write(20,*) 'set xlabel "Time (s)"'
write(20,*) 'set ylabel "Amplitude (m / s)"'
write(20,*)
write(20,*) 'set output "v_sigma_Vx_receiver_001.eps"'
write(20,*) 'plot "Vx_file_001.dat" t ''Vx C-PML'' w l lc 1'
write(20,*) 'pause -1 "Hit any key..."'
write(20,*)
write(20,*) 'set output "v_sigma_Vy_receiver_001.eps"'
write(20,*) 'plot "Vy_file_001.dat" t ''Vy C-PML'' w l lc 1'
write(20,*) 'pause -1 "Hit any key..."'
write(20,*)
write(20,*) 'set output "v_sigma_Vz_receiver_001.eps"'
write(20,*) 'plot "Vz_file_001.dat" t ''Vz C-PML'' w l lc 1'
write(20,*) 'pause -1 "Hit any key..."'
write(20,*)
write(20,*) 'set output "v_sigma_Vx_receiver_002.eps"'
write(20,*) 'plot "Vx_file_002.dat" t ''Vx C-PML'' w l lc 1'
write(20,*) 'pause -1 "Hit any key..."'
write(20,*)
write(20,*) 'set output "v_sigma_Vy_receiver_002.eps"'
write(20,*) 'plot "Vy_file_002.dat" t ''Vy C-PML'' w l lc 1'
write(20,*) 'pause -1 "Hit any key..."'
write(20,*)
write(20,*) 'set output "v_sigma_Vz_receiver_002.eps"'
write(20,*) 'plot "Vz_file_002.dat" t ''Vz C-PML'' w l lc 1'
write(20,*) 'pause -1 "Hit any key..."'
write(20,*)
close(20)
print *
print *,'End of the simulation'
print *
end program seismic_PML_Collino_3D_iso
!----
!---- save the seismograms in ASCII text format
!----
subroutine write_seismograms(sisvx,sisvy,nt,nrec,DELTAT)
implicit none
integer nt,nrec
double precision DELTAT
double precision sisvx(nt,nrec)
double precision sisvy(nt,nrec)
integer irec,it
character(len=100) file_name
! X component
do irec=1,nrec
write(file_name,"('Vx_file_',i3.3,'.dat')") irec
open(unit=11,file=file_name,status='unknown')
do it=1,nt
write(11,*) sngl(dble(it-1)*DELTAT),' ',sngl(sisvx(it,irec))
enddo
close(11)
enddo
! Y component
do irec=1,nrec
write(file_name,"('Vy_file_',i3.3,'.dat')") irec
open(unit=11,file=file_name,status='unknown')
do it=1,nt
write(11,*) sngl(dble(it-1)*DELTAT),' ',sngl(sisvy(it,irec))
enddo
close(11)
enddo
end subroutine write_seismograms
!----
!---- routine to create a color image of a given vector component
!---- the image is created in PNM format and then converted to GIF
!----
subroutine create_color_image(image_data_2D,NX,NY,it,ISOURCE,JSOURCE,ix_rec,iy_rec,nrec, &
NPOINTS_PML,USE_PML_XMIN,USE_PML_XMAX,USE_PML_YMIN,USE_PML_YMAX,field_number)
implicit none
! non linear display to enhance small amplitudes for graphics
double precision, parameter :: POWER_DISPLAY = 0.30d0