forked from biubug6/Pytorch_Retinaface
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdetect_merge.py
213 lines (178 loc) · 8.37 KB
/
detect_merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from __future__ import print_function
import os
import argparse
import torch
import torch.backends.cudnn as cudnn
import numpy as np
from data import cfg_mnet, cfg_re50
from layers.functions.prior_box import PriorBox
from utils.nms.py_cpu_nms import py_cpu_nms
import cv2
from models.retinaface import RetinaFace
from utils.box_utils import decode, decode_landm
import time
import torch.nn.functional as F
from pose import utils
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
parser = argparse.ArgumentParser(description='Retinaface')
parser.add_argument('-m', '--trained_model', default='./weights_merge/Resnet50_Final5_best.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--network', default='resnet50', help='Backbone network mobile0.25 or resnet50')
parser.add_argument('--cpu', action="store_true", default=False, help='Use cpu inference')
parser.add_argument('--confidence_threshold', default=0.02, type=float, help='confidence_threshold')
parser.add_argument('--top_k', default=5000, type=int, help='top_k')
parser.add_argument('--nms_threshold', default=0.4, type=float, help='nms_threshold')
parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k')
parser.add_argument('-s', '--save_image', default=True, type=bool, help='show detection results')
parser.add_argument('--vis_thres', default=0.5, type=float, help='visualization_threshold')
parser.add_argument('--image_path', default="/home/gengyanlei/Datasets/East_door_face/huge.jpg", type=str, help="image's path")
parser.add_argument('--output_path', default="test_5.jpg", type=str, help='predict-visual')
args = parser.parse_args()
def check_keys(model, pretrained_state_dict):
ckpt_keys = set(pretrained_state_dict.keys())
model_keys = set(model.state_dict().keys())
used_pretrained_keys = model_keys & ckpt_keys
unused_pretrained_keys = ckpt_keys - model_keys
missing_keys = model_keys - ckpt_keys
print('Missing keys:{}'.format(len(missing_keys)))
print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys)))
print('Used keys:{}'.format(len(used_pretrained_keys)))
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
return True
def remove_prefix(state_dict, prefix):
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
print('remove prefix \'{}\''.format(prefix))
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
return {f(key): value for key, value in state_dict.items()}
def load_model(model, pretrained_path, load_to_cpu):
print('Loading pretrained model from {}'.format(pretrained_path))
if load_to_cpu:
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage)
else:
device = torch.cuda.current_device()
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device))
if "state_dict" in pretrained_dict.keys():
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.')
else:
pretrained_dict = remove_prefix(pretrained_dict, 'module.')
check_keys(model, pretrained_dict)
model.load_state_dict(pretrained_dict, strict=False)
return model
if __name__ == '__main__':
torch.set_grad_enabled(False)
cfg = None
if args.network == "mobile0.25":
cfg = cfg_mnet
elif args.network == "resnet50":
cfg = cfg_re50
# net and model
net = RetinaFace(cfg=cfg, phase='test')
net = load_model(net, args.trained_model, args.cpu)
net.eval()
print('Finished loading model!')
# print(net)
cudnn.benchmark = True
device = torch.device("cpu" if args.cpu else "cuda")
net = net.to(device)
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor).cuda()
resize = 1
# testing begin
for i in range(1):
image_path = args.image_path
img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR)
img = np.float32(img_raw)
# 测试是原始图像尺寸,不是640*640尺寸
im_height, im_width, _ = img.shape
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) #whwh
img -= (104, 117, 123)
# 扩展 归一化;而且依旧是bgr输入,前后一致
img /= (57, 57, 58)
img = img.transpose(2, 0, 1) # chw
img = torch.from_numpy(img).unsqueeze(0)
img = img.to(device)
scale = scale.to(device)
tic = time.time()
loc, conf, landms, yaw, pitch, roll = net(img) # forward pass
print('net forward time: {:.4f}'.format(time.time() - tic))
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
# decode 就相当于 匹配了!!!将anchor与预测框之间进行匹配
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
boxes = boxes * scale / resize
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
# wh-> xy
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2]])
scale1 = scale1.to(device)
landms = landms * scale1 / resize
landms = landms.cpu().numpy()
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
landms = landms[inds]
scores = scores[inds]
yaw = yaw.squeeze(0)[inds]
pitch = pitch.squeeze(0)[inds]
roll = roll.squeeze(0)[inds]
# keep top-K before NMS 需要进行排序,获取每个预测框的score 按照从大到小排序,应该是每一类!
order = scores.argsort()[::-1][:args.top_k]
boxes = boxes[order]
landms = landms[order]
scores = scores[order]
yaw = yaw[order.tolist()]
pitch = pitch[order.tolist()]
roll = roll[order.tolist()]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, args.nms_threshold)
# keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
dets = dets[keep, :]
landms = landms[keep]
yaw = yaw[keep]
pitch = pitch[keep]
roll = roll[keep]
# keep top-K faster NMS
dets = dets[:args.keep_top_k, :]
landms = landms[:args.keep_top_k, :]
yaw = yaw[:args.keep_top_k]
pitch = pitch[:args.keep_top_k]
roll = roll[:args.keep_top_k]
yaw = F.softmax(yaw, dim=-1)
pitch = F.softmax(pitch, dim=-1)
roll = F.softmax(roll, dim=-1)
yaw = torch.sum(yaw * idx_tensor, -1) * 3 - 99
pitch = torch.sum(pitch * idx_tensor, -1) * 3 - 99
roll = torch.sum(roll * idx_tensor, -1) * 3 - 99
yaw = yaw.unsqueeze(-1).cpu().numpy()
pitch = pitch.unsqueeze(-1).cpu().numpy()
roll = roll.unsqueeze(-1).cpu().numpy()
dets = np.concatenate((dets, landms, yaw, pitch, roll), axis=1)
# show image
if args.save_image:
for b in dets:
if b[4] < args.vis_thres:
continue
text = "{:.4f}".format(b[4])
b = list(map(int, b))
cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2)
cx = b[0]
cy = b[1] + 12
cv2.putText(img_raw, text, (cx, cy),
cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255))
# landms
cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 3)
cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 3)
cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 3)
cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 3)
cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 3)
# pose
utils.draw_axis(img_raw, b[15], b[16], b[17], tdx=(b[0] + b[2]) / 2, tdy=(b[1] + b[3]) / 2, size=abs(b[3]-b[1]) / 2)
# save image
name = args.output_path
cv2.imwrite(name, img_raw)