forked from mit6874/mit6874.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
576 lines (561 loc) · 26.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
---
layout: default
---
<div class="home">
<div class="materials-wrap">
<p>Additional course websites:</p>
<ul>
<li><a href="https://canvas.mit.edu/courses/7499">MIT Canvas</a></li>
<li><a href="https://piazza.com/class/kl6p26a03ux19u?cid=28">Piazza</a> (discussion forum)</li>
</ul>
<h2 class="module-header">Course description</h2>
<p>This courses introduces foundations and state-of-the-art machine learning challenges in genomics and the life sciences more broadly. We introduce both deep learning and classical machine learning approaches to key problems, comparing and contrasting their power and limitations. We seek to enable students to evaluate a wide variety of solutions to key problems we face in this rapidly developing field, and to execute on new enabling solutions that can have large impact. As part of the subject students will implement solutions to challenging problems, first in problem sets that span a carefully chosen set of tasks, and then in an independent project. Students will program using Python 3 and TensorFlow 2 in Jupyter Notebooks, a nod to the importance of carefully documenting your work so it can be precisely reproduced by others.</p>
<h2 class="module-header">Syllabus and schedule</h2>
<table class="table">
<tr class="active">
<th> </th><th>When </th><th>Where </th><th>Description</th><th>Course materials</th><th>Reference</th>
</tr>
<tr>
<td>Lecture 1</td>
<td>Feb 16 1pm</td>
<td>Course Intro + Overview Foundations</td>
<td>
<ul>
<li>Read <a href="http://www.deeplearningbook.org/">Goodfellow</a> Chapter 1</li>
<li><a href="assets/sp2021/slides/l01.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=0jWOZoTsYzI">Lecture video</a></li>
</ul>
</td>
<td>
<ul>
<li><a href="https://arxiv.org/pdf/1603.06430.pdf">DL in Bioinformatics</a></li>
<li><a href="http://msb.embopress.org/content/msb/12/7/878.full.pdf">DL for computational biology</a></li>
<li><a href="http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000809">The Roots of Bioinformatics</a></li>
<li><a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?reload=true&arnumber=7347331">ML in Genomic Medicine</a></li>
<li><a href="https://github.com/gokceneraslan/awesome-deepbio">Awesome DeepBio</a></li>
<li><a href="http://colah.github.io/posts/2015-09-Visual-Information/">Visual Information Theory</a></li>
</ul>
</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>Feb 18 1pm</td>
<td>ML Foundations</td>
<td>
<ul>
<li>Read <a href="http://www.deeplearningbook.org/">Goodfellow</a> Chapter 6</li>
<li><a href="assets/slides/FeedForwardBackprop.pdf">Feed Forward Backprop</a></li>
<li><a href="assets/sp2021/slides/l02.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=QyFrYUCXbgI">Lecture video</a></li>
</ul>
</td>
<td>
<ul>
<li><a href="https://github.com/aymericdamien/TensorFlow-Examples">Damien</a></li>
<li><a href="http://nicklocascio.com/tensorflow-crash-course">Nick Locascio</a></li>
<li><a href="https://www.tensorflow.org/tutorials">TF site tutorials</a></li>
</ul>
</td>
</tr>
<tr>
<td>Recitation 1</td>
<td>Feb 19 3pm</td>
<td>ML Review</td>
<td>
<ul>
<li><a href="assets/sp2021/recitations/r01.pdf">Recitation slides</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>Lecture 3</td>
<td>Feb 23 1pm</td>
<td>Convolutional Neural Networks</td>
<td>
<ul>
<li>Read <a href="http://www.deeplearningbook.org/">Goodfellow</a> Chapter 9</li>
<li><a href="assets/sp2021/slides/l03.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=r5nXYc2wYvI&list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&index=4">Lecture video</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>Lecture 4</td>
<td>Feb 25 1pm</td>
<td>Recurrent Neural Networks, Graph Neural Networks</td>
<td>
<ul>
<li>Read <a href="http://www.deeplearningbook.org/">Goodfellow</a> Chapter 10</li>
<li><a href="assets/sp2021/slides/l04.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=tpeqHeqpmT0&list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&index=5">Lecture video</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>Recitation 2</td>
<td>Feb 26 3pm</td>
<td>Neural Networks Review</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r02.pdf">Recitation notes</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>Lecture 5</td>
<td>Mar 2 1pm</td>
<td>Interpretability, Dimensionality Reduction</td>
<td>
<ul>
<li><a href="assets/sp2021/slides/l05.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=5fIy19GXAxI&list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&index=6">Lecture video</a></li>
</ul>
</td>
<td>
<ul style="font-size: smaller">
<li><a href="assets/misc/binder.pdf">Binder et al. (Relevance Propagation)</a></li>
<li><a href="assets/misc/dumoulin.pdf">Dumoulin and Visin (Convolution Arithmetic)</a></li>
<li><a href="assets/misc/finnegan.pdf">Finnegan and Song (Maximum entropy methods)</a></li>
<li><a href="assets/misc/lundberg.pdf">Lundberg and Lee (SHAP)</a></li>
<li><a href="assets/misc/ribeiro.pdf">Ribeiro (LIME)</a></li>
<li><a href="assets/misc/selvaraju.pdf">Selvaraju et al. (Grad-CAM)</a></li>
<li><a href="assets/misc/shrikumar.pdf">Shrikumar et al. (Learning Important Features)</a></li>
<li><a href="assets/misc/shrikumar-2.pdf">Shrikumar et al. (DeepLIFT)</a></li>
<li><a href="assets/misc/simonyan.pdf">Simonyan et al. (Saliency Maps)</a></li>
<li><a href="assets/misc/springenberg.pdf">Springenberg et al. (CNN)</a></li>
<li><a href="assets/misc/sundararajan.pdf">Sundararajan et al. (Axiomatic Attribution)</a></li>
<li><a href="assets/misc/yosinski.pdf">Yosinski et al. (Deep Visualization)</a></li>
<li><a href="assets/misc/zeiler.pdf">Zeiler et al. (Deconvolutional Networks)</a></li>
<li><a href="assets/misc/zeiler-2.pdf">Zeiler and Fergus (Understanding Convolutional Networks)</a></li>
<li><a href="assets/misc/zhou.pdf">Zhou et al. (Discriminative Localization)</a></li>
</ul>
</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>Mar 4 1pm</td>
<td>Generative Models, GANs, VAE</td>
<td>
<ul>
<li><a href="assets/sp2021/slides/l06.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=XEN5VfFScSg&list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&index=7">Lecture video</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>Recitation 3</td>
<td>Mar 5 3pm</td>
<td>Interpreting ML Models</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r03.pdf">Recitation slides</a></li>
</ul>
</td>
<td></td>
</tr>
<tr class="info">
<td>No class</td>
<td>Mar 9</td>
<td></td>
<td>Monday Class Schedule</td>
<td></td>
<td></td>
</tr>
<tr class="warning">
<td>Deadline</td>
<td>Mar 10 11:59pm</td>
<td></td>
<td>PS1 due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture 7</td>
<td>Mar 11 1pm</td>
<td>DNA Accessibility, Promoters and Enhancers</td>
<td><ul>
<li><a href="assets/sp2021/slides/l07.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=5usrA2yWQjw">Lecture video</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>Recitation 4</td>
<td>Mar 12 3pm</td>
<td>Chromatin and gene regulation</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r04.pdf">Recitation slides</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>Lecture 8</td>
<td>Mar 16 1pm</td>
<td>Transcription Factors, DNA methylation</td>
<td><ul>
<li><a href="assets/sp2021/slides/l08.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=iHOgKx1mqEw&list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&index=8">Lecture video</a></li>
</ul>
</td>
<td></td>
</tr>
<tr>
<td>Lecture 9</td>
<td>Mar 18 1pm</td>
<td>Gene Expression, Splicing</td>
<td><ul>
<li><a href="assets/sp2021/slides/l09.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=6ArtsTQ0eiM">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Recitation 5</td>
<td>Mar 19 3pm</td>
<td>RNA-seq, Splicing</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r05.pdf">Recitation slides</a></li>
</ul></td>
<td></td>
</tr>
<tr class="info">
<td>No class</td>
<td>Mar 23</td>
<td></td>
<td>Class Holiday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Mar 25 1pm</td>
<td>Single cell RNA-sequencing</td>
<td><ul>
<li><a href="assets/sp2021/slides/l10.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=NNOkdgE4jNM">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Recitation 6</td>
<td>Mar 26 3pm</td>
<td>scRNA-seq, dimensionality reduction</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r06.pdf">Recitation slides</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Mar 30 1pm</td>
<td>Dimensionality Reduction, Genetics, and Variation</td>
<td><ul>
<li><a href="assets/sp2021/slides/l11a.pdf">Lecture slides A</a></li>
<li><a href="assets/sp2021/slides/l11b.pdf">Lecture slides B</a></li>
<li><a href="https://www.youtube.com/watch?v=0byf2OF6AT0">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Lecture 12</td>
<td>Apr 1 1pm</td>
<td>GWAS and Rare variants</td>
<td><ul>
<li><a href="assets/sp2021/slides/l12.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=j3l1RpBimjU&list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&index=12">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr class="warning">
<td>Deadline</td>
<td>Apr 1 11:59pm</td>
<td></td>
<td>PS2 due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recitation 7</td>
<td>Apr 2 3pm</td>
<td>Genetics</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r07a.pdf">Recitation slides A</a></li>
<li><a href="assets/sp2021/recitations/r07b.pdf">Recitation slides B</a></li>
</ul></td>
</td>
<td></td>
</tr>
<tr>
<td>Lecture 13</td>
<td>Apr 6 1pm</td>
<td>eQTLs</td>
<td><ul>
<li><a href="assets/sp2021/slides/l13.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=8tfTSLvQvsw&list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&index=13">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Lecture 14</td>
<td>Apr 8 1pm</td>
<td>Electronic health records and patient data</td>
<td><ul>
<li><a href="assets/sp2021/slides/l14.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=r-c6uJcsCdg&list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&index=14">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Recitation 8</td>
<td>Apr 9 3pm</td>
<td>ML for health data</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r08.pdf">Recitation slides</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Lecture 15</td>
<td>Apr 13 1pm</td>
<td>Graph analysis</td>
<td><ul>
<li><a href="assets/sp2021/slides/l15a.pdf">Lecture slides Part A</a></li>
<li><a href="assets/sp2021/slides/l15b.pdf">Lecture slides Part B</a></li>
<li><a href="https://www.youtube.com/watch?v=mv2Df-_p7EQ">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Lecture 16</td>
<td>Apr 15 1pm</td>
<td>Drug discovery</td>
<td><ul>
<li><a href="assets/sp2021/slides/l16.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=AHVJv5RNqKs">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Recitation 9</td>
<td>Apr 16 3pm</td>
<td>Protein structure prediction</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r09.pdf">Recitation slides</a></li>
</ul></td>
<td></td>
</tr>
<tr class="info">
<td>No class</td>
<td>Apr 20</td>
<td></td>
<td>Class Holiday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture 17</td>
<td>Apr 22 1pm</td>
<td>Protein folding</td>
<td><ul>
<li><a href="assets/sp2021/slides/l17a.pdf">Lecture slides Part A</a></li>
<li><a href="assets/sp2021/slides/l17b.pdf">Lecture slides Part B</a></li>
<li><a href="assets/sp2021/slides/l17c.pdf">Lecture slides Part C</a></li>
<li><a href="https://www.youtube.com/watch?v=1YHsSFWn5OA">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr class="warning">
<td>Deadline</td>
<td>Apr 23 11:59pm</td>
<td></td>
<td>PS3 due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recitation 10</td>
<td>Apr 23 3pm</td>
<td>Exam prep session<td>
<td><ul>
<li><a href="assets/sp2021/recitations/r10.pdf">Recitation slides</a></li>
</ul></td>
<td></td>
</tr>
<tr class="warning">
<td>Exam</td>
<td>Apr 27 11:59pm</td>
<td></td>
<td>In-class exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture 19</td>
<td>Apr 29 1pm</td>
<td>No lecture</td>
<td></td>
<td></td>
</tr>
<tr class="warning">
<td>Deadline</td>
<td>Apr 29 11:59pm</td>
<td></td>
<td>PS4 due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recitation 11</td>
<td>Apr 30 3pm</td>
<td>Structural biology and protein folding</td>
<td><ul>
<li><a href="assets/sp2021/recitations/r11.pdf">Recitation slides</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Lecture 20</td>
<td>May 4 1pm</td>
<td>Imaging applications in healthcare</td>
<td><ul>
<li><a href="assets/sp2021/slides/l20a.pdf">Lecture slides Part A</a></li>
<li><a href="assets/sp2021/slides/l20b.pdf">Lecture slides Part B</a></li>
<li><a href="https://www.youtube.com/watch?v=dhMm5uGLzG4">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Lecture 21</td>
<td>May 6 1pm</td>
<td>Video processing, structure determination</td>
<td><ul>
<li><a href="assets/sp2021/slides/l21.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=MVDUnbVXMGM">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr class="info">
<td>No class</td>
<td>May 7</td>
<td></td>
<td>Class Holiday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture 22</td>
<td>May 11 1pm</td>
<td>Imaging and Cancer</td>
<td><ul>
<li><a href="assets/sp2021/slides/l22a.pdf">Lecture slides Part A</a></li>
<li><a href="assets/sp2021/slides/l22b.pdf">Lecture slides Part B</a></li>
<li><a href="https://www.youtube.com/watch?v=c4dvyTBvysQ">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Lecture 23</td>
<td>May 13 1pm</td>
<td>EHRs and data mining</td>
<td><ul>
<li><a href="assets/sp2021/slides/l23a.pdf">Lecture slides</a></li>
<li><a href="https://www.youtube.com/watch?v=KKX589Jt2bA">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr>
<td>Recitation 12</td>
<td>May 14 3pm</td>
<td>How to present</td>
<td><ul>
<li><a href="https://www.youtube.com/watch?v=KzyvIBjBkuc">Recitation video</a></li>
</ul>
</td>
<td></td>
</tr>
<tr class="warning">
<td>Deadline</td>
<td>May 17 11:59pm</td>
<td></td>
<td>Final project reports due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture 24</td>
<td>May 18 1pm</td>
<td>Neuroscience</td>
<td><ul>
<li><a href="assets/sp2021/slides/l24a.pdf">Lecture slides Part A</a></li>
<li><a href="assets/sp2021/slides/l24b.pdf">Lecture slides Part B</a></li>
<li><a href="https://www.youtube.com/watch?v=Jj9BbKhZSYM">Lecture video</a></li>
</ul></td>
<td></td>
</tr>
<tr class="warning">
<td>Deadline</td>
<td>May 19 11:59pm</td>
<td></td>
<td>Final presentations due</td>
<td></td>
<td></td>
</tr>
<tr class="warning">
<td>Deadline</td>
<td>May 20</td>
<td></td>
<td>In-class final presentations</td>
<td></td>
<td></td>
</tr>
</table>
<h2 class="module-header">Tutorials for TensorFlow, NumPy, Google Cloud, and Jupyter notebooks</h2>
<p>We collected a series of pointers to tutorials on NumPy, TensorFlow, Google Cloud and Conda <a href="tutorials/main/">here</a>. We also provide a <a href="tutorials/quickstart/">Quickstart tutorial</a> to set up essential environment and tools for you to work on problem set 0 and problem set 1.</p>
<h2 class="module-header">Prerequisites</h2>
<p>You should be comfortable with calculus, linear algebra, (Python) programming, probability, and introductory molecular biology. This will be a fast paced course, and it is targeted towards students that are both mathematically and computational capable. There are many other subjects at MIT that teach overviews of computational biology that are less demanding, we would be happy to recommend other options if you find this subject is not what you desire.</p>
<h2 class="module-header">Class meeting times</h2>
<ul>
<li>Lecture: TR1-2.30</li>
<li>Recitation: F3-4</li>
<li>Mentoring Session: F4-5</li>
</ul>
<h2 class="module-header">Contact</h2>
<p>You should feel free to contact the lecturer and the TAs about any questions through <a href="mailto:[email protected]">[email protected]</a>. The best way to get detailed questions answered is to attend TA office hours and recitation or post them on <a target="_blank" href="https://piazza.com/class/kl6p26a03ux19u?cid=28">Piazza</a>.</p>
<h2 class="module-header">Office hours</h2>
<div class="materials-item">
Manolis Kellis ([email protected]): M 5-6pm
</div>
<div class="materials-item">
Zheng Dai, Dylan Cable: Tues 4-5pm
</div>
<div class="materials-item">
Jackie Valeri, Tessa Gustafson: Wed 7-8pm
</div>
<h2 class="module-header">Grading</h2>
<p>Grading will be based upon five programming-intensive problem sets (30%), a quiz (25%), a project (35%), and participation plus one day of lecture scribing (10%). Attendance in lecture is important as the class moves quickly and you will need to be present. For students enrolled in one of the graduate versions of this class (6.874, 20.490, and HST.506) there will be an extra section on some problem sets. You can use three late days for problem set deadlines (or email the course staff).</p>
<h2 class="module-header">Lecture Scribing</h2>
<p>If you are enrolled in this course for credit, you are requiured to scribe for one lecture.
<p>The requirements for lecture scribing are as follows:</p>
<ol>
<li>On the day of lecture you may take notes however you like. Lectures will be recorded, so asynchronous participation is fine.</li>
<li>
During the week after lecture, we ask that you work with everyone assigned to scribe your lecture to compile a finalized set of notes that summarize the key points of the lecture, explain important equations, images and plots, illustrate or describe relevant things that were written on the board, and describe any important questions & answers between student and professor that were exchanged. <br>
The end goal is for you to generate a compact resource which you and your classmates can use to glean the important material from your lecture. The finalized notes should generally adhere to and extend from the structure outlined by the headings at the beginning of the notes template.
</li>
<li>
The notes template and finished scribed notes may be found <a href="https://www.dropbox.com/work/6874_Spring21/8.Scribing">here</a>.</li>
<li>Let the course staff know you are finished compiling the notes by sending an email to <a href="mailto:[email protected]?Subject=Lecture%20Scribing" target="_top">[email protected]</a>. The deadline for completing the notes will be end-of-day one week after your lecture (e.g. notes from a lecture on 2/18 will be due on 2/25 @ 11:59 PM).</li>
</ol>
<h2 class="module-header">Project</h2>
<!-- TODO: link to project details A detailed project description can be found <a target="_blank" href="assets/final-project-2019.pdf">here</a>. -->
<p>This subject has a substantial project component. We strongly recommend working on projects in team of 2-3 students, but if there’s a strong justification, we can consider exceptions. You are free to choose any problem in the life sciences related to the lectures of the course, and develop a deep learning solution using the subject’s methodologies or cloud resources. We will have extensive mentoring resources for the students to help provide guidance, access to datasets, and biological insights. We will hold mentoring sessions during which you will have a chance to refine your ideas in consultation with the teaching staff and research mentors for each research area.</p>
<h2 class="module-header">Textbook</h2>
<p>We will be using the book “Deep Learning” by Goodfellow, Bengio, and Courville. You can find the book online <a target="_blank" href="http://deeplearningbook.org">here</a> and <a target="_blank" href="https://github.com/janishar/mit-deep-learning-book-pdf">here</a>. You can purchase a hard copy at <a target="_blank" href="https://mitpress.mit.edu/books/deep-learning">MIT Press</a> or on Amazon.</p>
<p>Another useful book is the <a href="assets/matrix-cookbook.pdf">Matrix Cookbook</a>, an extensive collection of facts about matrices.</p>
</div>
</div>