-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexcllocks.hpp
411 lines (333 loc) · 9.26 KB
/
excllocks.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
#ifndef EXCL_LOCKS_HPP
#define EXCL_LOCKS_HPP
#include <cassert>
#include <vector>
#include <atomic>
#include <mutex>
#include "os.hpp"
class Mutex
{
public:
ALWAYS_INLINE void Enter()
{
Mtx.lock();
}
ALWAYS_INLINE void Leave()
{
Mtx.unlock();
}
private:
std::mutex Mtx;
};
#if (OS == UNIX)
#include <pthread.h>
class SpinLockPThread
{
public:
ALWAYS_INLINE SpinLockPThread()
{
pthread_spin_init(&Lock, 0);
}
ALWAYS_INLINE void Enter()
{
pthread_spin_lock(&Lock);
}
ALWAYS_INLINE void Leave()
{
pthread_spin_unlock(&Lock);
}
private:
pthread_spinlock_t Lock;
};
#elif (OS == WIN)
class LockCriticalSection
{
public:
ALWAYS_INLINE LockCriticalSection()
{
InitializeCriticalSection(&Cs);
}
ALWAYS_INLINE void Enter()
{
EnterCriticalSection(&Cs);
}
ALWAYS_INLINE void Leave()
{
LeaveCriticalSection(&Cs);
}
private:
CRITICAL_SECTION Cs;
};
#endif
class ScTasSpinLock
{
public:
ALWAYS_INLINE void Enter()
{
while (Locked.exchange(true));
}
ALWAYS_INLINE void Leave()
{
Locked.store(false);
}
private:
std::atomic_bool Locked = {false};
};
class TasSpinLock
{
public:
ALWAYS_INLINE void Enter()
{
while (Locked.exchange(true, std::memory_order_acquire));
}
ALWAYS_INLINE void Leave()
{
Locked.store(false, std::memory_order_release);
}
private:
std::atomic_bool Locked = {false};
};
class TTasSpinLock
{
public:
ALWAYS_INLINE void Enter()
{
do
{
while (Locked.load(std::memory_order_relaxed));
}
while (Locked.exchange(true, std::memory_order_acquire));
}
ALWAYS_INLINE void Leave()
{
Locked.store(false, std::memory_order_release);
}
private:
std::atomic_bool Locked = {false};
};
class RelaxTTasSpinLock
{
public:
ALWAYS_INLINE void Enter()
{
do
{
while (Locked.load(std::memory_order_relaxed))
CpuRelax();
}
while (Locked.exchange(true, std::memory_order_acquire));
}
ALWAYS_INLINE void Leave()
{
Locked.store(false, std::memory_order_release);
}
private:
std::atomic_bool Locked = {false};
};
class ExpBoRelaxTTasSpinLock
{
public:
ALWAYS_INLINE void Enter()
{
size_t curMaxDelay = MIN_BACKOFF_ITERS;
while (true)
{
WaitUntilLockIsFree();
if (Locked.exchange(true, std::memory_order_acquire))
BackoffExp(curMaxDelay);
else
break;
}
}
ALWAYS_INLINE void Leave()
{
Locked.store(false, std::memory_order_release);
}
private:
ALWAYS_INLINE void WaitUntilLockIsFree() const
{
size_t numIters = 0;
while (Locked.load(std::memory_order_relaxed))
{
if (numIters < MAX_WAIT_ITERS)
{
numIters++;
CpuRelax();
}
else
YieldSleep();
}
}
public:
std::atomic_bool Locked = {false};
private:
static const size_t MAX_WAIT_ITERS = 0x10000;
static const size_t MIN_BACKOFF_ITERS = 32;
};
class TicketSpinLock
{
public:
ALWAYS_INLINE void Enter()
{
const auto myTicketNo = NextTicketNo.fetch_add(1, std::memory_order_relaxed);
while (ServingTicketNo.load(std::memory_order_acquire) != myTicketNo)
CpuRelax();
}
ALWAYS_INLINE void Leave()
{
// We can get around a more expensive read-modify-write operation
// (std::atomic_size_t::fetch_add()), because noone can modify
// ServingTicketNo while we're in the critical section.
const auto newNo = ServingTicketNo.load(std::memory_order_relaxed)+1;
ServingTicketNo.store(newNo, std::memory_order_release);
}
private:
alignas(CACHELINE_SIZE) std::atomic_size_t ServingTicketNo = {0};
alignas(CACHELINE_SIZE) std::atomic_size_t NextTicketNo = {0};
};
static_assert(sizeof(TicketSpinLock) == 2*CACHELINE_SIZE, "");
class PropBoTicketSpinLock
{
public:
ALWAYS_INLINE void Enter()
{
constexpr size_t BACKOFF_BASE = 10;
const auto myTicketNo = NextTicketNo.fetch_add(1, std::memory_order_relaxed);
while (true)
{
const auto servingTicketNo = ServingTicketNo.load(std::memory_order_acquire);
if (servingTicketNo == myTicketNo)
break;
const size_t waitIters = BACKOFF_BASE*(myTicketNo-servingTicketNo);
for (size_t i=0; i<waitIters; i++)
CpuRelax();
}
}
ALWAYS_INLINE void Leave()
{
const auto newNo = ServingTicketNo.load(std::memory_order_relaxed)+1;
ServingTicketNo.store(newNo, std::memory_order_release);
}
private:
alignas(CACHELINE_SIZE) std::atomic_size_t ServingTicketNo = {0};
alignas(CACHELINE_SIZE) std::atomic_size_t NextTicketNo = {0};
};
static_assert(sizeof(PropBoTicketSpinLock) == 2*CACHELINE_SIZE, "");
class AndersonSpinLock
{
public:
AndersonSpinLock(size_t maxThreads=std::thread::hardware_concurrency()) :
LockedFlags(maxThreads)
{
for (auto &flag : LockedFlags)
flag.first = true;
LockedFlags[0].first = false;
}
ALWAYS_INLINE void Enter()
{
const size_t index = NextFreeIdx.fetch_add(1)%LockedFlags.size();
auto &flag = LockedFlags[index].first;
// Ensure overflow never happens
if (index == 0)
NextFreeIdx -= LockedFlags.size();
while (flag)
CpuRelax();
flag = true;
}
ALWAYS_INLINE void Leave()
{
const size_t idx = NextServingIdx.fetch_add(1);
LockedFlags[idx%LockedFlags.size()].first = false;
}
private:
using PaddedFlag = std::pair<std::atomic_bool, uint8_t[CACHELINE_SIZE-sizeof(std::atomic_bool)]>;
static_assert(sizeof(PaddedFlag) == CACHELINE_SIZE, "");
alignas(CACHELINE_SIZE) std::vector<PaddedFlag> LockedFlags;
alignas(CACHELINE_SIZE) std::atomic_size_t NextFreeIdx = {0};
alignas(CACHELINE_SIZE) std::atomic_size_t NextServingIdx = {1};
};
class GraunkeAndThakkarSpinLock
{
public:
GraunkeAndThakkarSpinLock(size_t maxThreads=std::thread::hardware_concurrency()) :
LockedFlags(maxThreads)
{
for (auto &flag : LockedFlags)
flag.first = 1;
assert(Tail.is_lock_free());
Tail = reinterpret_cast<uintptr_t>(&LockedFlags[0].first);
assert((Tail&1) == 0); // Make sure there's space to store the old flag value in the LSB
}
ALWAYS_INLINE void Enter()
{
// Create new tail by chaining my synchronization variable into the list
const auto &newFlag = LockedFlags[GetThreadIndex()].first;
const auto newTail = reinterpret_cast<uintptr_t>(&newFlag)|static_cast<uintptr_t>(newFlag);
const auto ahead = Tail.exchange(newTail);
// Extract flag and old value of previous thread in line, so that we can wait for its completion
const auto *aheadFlag = reinterpret_cast<std::atomic_uint16_t *>(ahead&(~static_cast<uintptr_t>(1)));
const auto aheadValue = static_cast<uint16_t>(ahead&1);
// Wait for previous thread in line to flip my synchronization variable
while (aheadFlag->load() == aheadValue)
CpuRelax();
}
ALWAYS_INLINE void Leave()
{
// Flipping synchronization variable enables next thread in line to enter CS
auto &flag = LockedFlags[GetThreadIndex()].first;
flag = !flag;
}
private:
ALWAYS_INLINE size_t GetThreadIndex() const
{
static std::atomic_size_t threadCounter = {0};
thread_local size_t threadIdx = threadCounter++;
assert(threadIdx < LockedFlags.size());
return threadIdx;
}
private:
using PaddedFlag = std::pair<std::atomic_uint16_t, uint8_t[CACHELINE_SIZE-sizeof(std::atomic_uint16_t)]>;
static_assert(sizeof(PaddedFlag) == CACHELINE_SIZE, "");
// In the LSB the old value of the flag is stored
alignas(CACHELINE_SIZE) std::atomic<uintptr_t> Tail;
alignas(CACHELINE_SIZE) std::vector<PaddedFlag> LockedFlags;
static_assert(sizeof(decltype(LockedFlags)::value_type) > 1,
"Flag size > 1 required: thanks to alginment, old flag value can be stored in LSB");
};
class McsLock
{
public:
struct QNode
{
std::atomic<QNode *> Next = {nullptr};
std::atomic_bool Locked = {false};
};
public:
ALWAYS_INLINE void Enter(QNode &node)
{
node.Next = nullptr;
node.Locked = true;
QNode *oldTail = Tail.exchange(&node);
if (oldTail != nullptr)
{
oldTail->Next = &node;
while (node.Locked == true)
CpuRelax();
}
}
ALWAYS_INLINE void Leave(QNode &node)
{
if (node.Next.load() == nullptr)
{
QNode *tailWasMe = &node;
if (Tail.compare_exchange_strong(tailWasMe, nullptr))
return;
while (node.Next.load() == nullptr)
CpuRelax();
}
node.Next.load()->Locked = false;
}
private:
std::atomic<QNode *> Tail = {nullptr};
};
#endif