-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtfs.py
237 lines (190 loc) · 9.13 KB
/
tfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
from __future__ import print_function
from __future__ import absolute_import
from builtins import next
from builtins import str
from builtins import range
from past.builtins import basestring
import tensorflow as tf
import numpy as np
import os
import shutil
import time
from .layers import *
from .classes import *
flags = tf.app.flags
FLAGS = flags.FLAGS
logging = tf.logging
flags.DEFINE_float('gpu_mem', 1.0, "Fraction of gpu memory to be used.")
flags.DEFINE_float('reg', 1e-8, "weight on the regularizer")
flags.DEFINE_string('project', 'tfs', "top level directory which contains summaries, saved models.")
flags.DEFINE_string('name', 'unamed_run', "top level directory which contains summaries, saved models.")
flags.DEFINE_string('base_path', '/home/girish.varma/', "top level directory which contains summaries, saved models.")
flags.DEFINE_integer("B", 100, "batch size")
flags.DEFINE_float("rate", 0.001, "learning rate")
flags.DEFINE_bool("new", False, "Delete the previous run with same name and start new.")
flags.DEFINE_integer("threads", 8, "threads")
flags.DEFINE_boolean('load', False, "Load model")
allow_soft_placement = True
log_device_placement = False
def training_loop(ctrl, model, test = False):
if FLAGS.load and 'saver' in ctrl.keys():
ctrl['saver'].restore(ctrl['sess'], tf.train.latest_checkpoint(FLAGS.base_path + FLAGS.project+ '/model/' +FLAGS.name))
step = 0
try:
start = time.time()
while not ctrl['coord'].should_stop():
try:
summ, step = model.train(ctrl['sess'])
if 'writer' in ctrl.keys():
ctrl['writer'].add_summary(summ, step*FLAGS.B)
if step % 10 == 0:
if 'writer' in ctrl.keys():
ctrl['writer'].flush()
if step % 10 == 0 and test:
summ = model.validate(ctrl['sess'])
if 'writer' in ctrl.keys():
ctrl['writer'].add_summary(summ, step*FLAGS.B)
ctrl['writer'].flush()
if 'saver' in ctrl.keys():
ctrl['saver'].save(ctrl['sess'], FLAGS.base_path + FLAGS.project+ '/model/' +FLAGS.name, global_step = step)
end = time.time() - start
print('time for 10 steps ', end, '. Samples seen ', step *FLAGS.B)
start = time.time()
except tf.errors.DataLossError as err:
print(err.message)
except tf.errors.OutOfRangeError:
print('Training done')
if 'saver' in ctrl.keys():
ctrl['saver'].save(ctrl['sess'], FLAGS.base_path + 'model/' + FLAGS.name, global_step = step)
finally:
ctrl['coord'].request_stop()
if 'saver' in ctrl.keys():
ctrl['saver'].save(ctrl['sess'], FLAGS.base_path + "model/" + FLAGS.name, global_step = step)
ctrl['coord'].join(ctrl['threads'])
ctrl['sess'].close()
def find_class_by_name(name, modules):
"""Searches the provided modules for the named class and returns it."""
modules = [getattr(module, name, None) for module in modules]
return next(a for a in modules if a)
def create_folders():
if not os.path.exists(FLAGS.base_path + FLAGS.project):
os.makedirs(FLAGS.base_path + FLAGS.project)
if not os.path.exists(FLAGS.base_path + FLAGS.project + '/model'):
os.makedirs(FLAGS.base_path + FLAGS.project + '/model')
if not os.path.exists(FLAGS.base_path + FLAGS.project + '/summary'):
os.makedirs(FLAGS.base_path + FLAGS.project + '/summary')
if not os.path.exists(FLAGS.base_path + FLAGS.project+ '/model/' +FLAGS.name ):
os.makedirs(FLAGS.base_path + FLAGS.project+ '/model/' +FLAGS.name )
if not os.path.exists(FLAGS.base_path + FLAGS.project+ '/summary/' +FLAGS.name ):
os.makedirs(FLAGS.base_path + FLAGS.project+ '/summary/' +FLAGS.name )
model_path = FLAGS.base_path + FLAGS.project+ '/model/' +FLAGS.name
summary_path = FLAGS.base_path + FLAGS.project+ '/summary/' +FLAGS.name
if os.path.exists(model_path) and not FLAGS.load:
shutil.rmtree(model_path)
if os.path.exists(summary_path) and not FLAGS.load:
shutil.rmtree(summary_path)
if not os.path.exists(model_path):
os.makedirs(model_path)
if not os.path.exists(summary_path):
os.makedirs(summary_path)
def session():
config = tf.ConfigProto(allow_soft_placement=allow_soft_placement,log_device_placement=log_device_placement)
config.gpu_options.per_process_gpu_memory_fraction=FLAGS.gpu_mem # don't hog all vRAM
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
return sess
def init_tf(writer = False, saver = False, coord = False):
create_folders()
sess = session()
output = {'sess': sess}
init = tf.global_variables_initializer()
sess.run(init)
sess.run(tf.local_variables_initializer())
if writer:
output['writer'] = tf.summary.FileWriter(FLAGS.base_path + FLAGS.project+ '/summary/' +FLAGS.name, sess.graph)
if saver:
output['saver'] = tf.train.Saver(var_list= tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
if coord:
output['coord'] = coord = tf.train.Coordinator()
output['threads'] = tf.train.start_queue_runners(sess=sess, coord=coord)
return output
def shape(x):
return x.get_shape().as_list()
def match(y, y_pred, name = 'match'):
with tf.variable_scope(name):
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(y_pred,1), tf.argmax(y,1)), tf.float32))
return accuracy
def softmax_cross_entropy(y, y_pred, name = 'softmax_cross_entropy'):
return tf.losses.softmax_cross_entropy(y, y_pred)
def classify(y, y_pred, y_val = None, y_pred_val = None, **kwargs):
loss = kwargs.get('loss', softmax_cross_entropy)
acc = kwargs.get('acc', match)
with tf.variable_scope('train_loss_acc'):
train_loss = loss(y, y_pred)
train_acc = acc(y, y_pred)
train_reg = sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
total_train_loss = train_loss + FLAGS.reg*train_reg
train_summary = [
tf.summary.scalar('loss', train_loss),
tf.summary.scalar('accuracy', train_acc),
tf.summary.scalar('regularizer', train_reg),
tf.summary.scalar('total_loss', total_train_loss)
]
optimizer, rate, global_step = minimize(total_train_loss, **kwargs)
train_summary += [tf.summary.scalar('learning_rate', rate)]
valid_summary = []
if y_val != None:
with tf.variable_scope('valid_loss_acc'):
valid_loss = loss(y_val, y_pred_val)
valid_acc = acc(y_val, y_pred_val)
valid_summary += [
tf.summary.scalar('loss', valid_loss),
tf.summary.scalar('accuracy', valid_acc)
]
model_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
for i in model_vars:
valid_summary += [tf.summary.histogram(i.op.name, i)]
return optimizer, tf.summary.merge(train_summary), tf.summary.merge(valid_summary), global_step
def minimize(loss_tensor, **kwargs):
algo = kwargs.get('algo', 'adam')
rate = kwargs.get('rate', 0.01)
name = kwargs.get('name', 'optimizer')
grad_clip = kwargs.get('grad_clip', 1.0)
global_step = tf.Variable(0, trainable=False, name="global_step")
learning_rate = tf.train.exponential_decay(
rate,
global_step * FLAGS.B,
kwargs.get('learning_rate_decay_examples', 4000000),
kwargs.get('learning_rate_decay', 0.95),
staircase=True)
with tf.variable_scope(name):
optimizer = None
if algo == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
elif algo == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
elif algo == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, kwargs.get('momentum', None))
gvs = optimizer.compute_gradients(loss_tensor)
if grad_clip != 0. :
gvs = [(tf.clip_by_value(grad, -grad_clip, grad_clip), var) for grad, var in gvs]
train_op = optimizer.apply_gradients(gvs, global_step = global_step)
return train_op, learning_rate, global_step
def sequential(x, net, defaults = {}, name = '', reuse = None, var = {}, layers = {}):
layers = dict(list(layers.items()) + list(predefined_layers.items()))
y = x
logging.info('Building Sequential Network : %s', name)
with tf.variable_scope(name, reuse = reuse):
for i in range(len(net)):
ltype = net[i][0]
lcfg = net[i][1] if len(net[i]) == 2 else {}
lname = lcfg.get('name', ltype + str(i))
ldefs = defaults.get(ltype, {})
lcfg = dict(list(ldefs.items()) + list(lcfg.items()))
for k, v in list(lcfg.items()):
if isinstance(v, basestring) and v[0] == '$':
# print var, v
lcfg[k] = var[v[1:]]
y = layers[ltype](y, lname, **lcfg)
logging.info('\t %s \t %s', lname, y.get_shape().as_list())
return y