-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path235.lowest-common-ancestor-of-a-binary-search-tree.cpp
63 lines (58 loc) · 1.69 KB
/
235.lowest-common-ancestor-of-a-binary-search-tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Tag: Tree, Depth-First Search, Binary Search Tree, Binary Tree
// Time: O(N)
// Space: O(H)
// Ref: -
// Note: -
// Given a binary search tree (BST), find the lowest common ancestor (LCA) node of two given nodes in the BST.
// According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
//
// Example 1:
//
//
// Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
// Output: 6
// Explanation: The LCA of nodes 2 and 8 is 6.
//
// Example 2:
//
//
// Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
// Output: 2
// Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
//
// Example 3:
//
// Input: root = [2,1], p = 2, q = 1
// Output: 2
//
//
// Constraints:
//
// The number of nodes in the tree is in the range [2, 105].
// -109 <= Node.val <= 109
// All Node.val are unique.
// p != q
// p and q will exist in the BST.
//
//
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root->val > p->val && root->val > q->val) {
return lowestCommonAncestor(root->left, p, q);
}
if (root->val < p->val && root->val < q->val) {
return lowestCommonAncestor(root->right, p, q);
}
return root;
}
};