1
- #Python program to calculate x raised to the power n (i.e., x^n)
2
-
3
- # Script Name : power_of_n.py
4
- # Author : Himanshu Gupta
5
- # Created : 2nd September 2023
6
- # Last Modified :
7
- # Version : 1.0
8
- # Modifications :
9
- # Description : Program which calculates x raised to the power of n, where x can be float number or integer and n can be positive or negative number
10
- # Example 1:
11
-
12
- # Input: x = 2.00000, n = 10
13
- # Output: 1024.00000
14
- # Example 2:
15
-
16
- # Input: x = 2.10000, n = 3
17
- # Output: 9.26100
18
- # Example 3:
19
-
20
- # Input: x = 2.00000, n = -2
21
- # Output: 0.25000
22
- # Explanation: 2^-2 = 1/(2^2) = 1/4 = 0.25
23
-
24
- #Class
25
- class Solution :
26
-
27
- def binaryExponentiation (self , x : float , n : int ) -> float :
28
- if n == 0 :
29
- return 1
30
-
31
- # Handle case where, n < 0.
32
- if n < 0 :
33
- n = - 1 * n
34
- x = 1.0 / x
35
-
36
- # Perform Binary Exponentiation.
37
- result = 1
38
- while n != 0 :
39
- # If 'n' is odd we multiply result with 'x' and reduce 'n' by '1'.
40
- if n % 2 == 1 :
41
- result *= x
42
- n -= 1
43
- # We square 'x' and reduce 'n' by half, x^n => (x^2)^(n/2).
44
- x *= x
45
- n //= 2
46
- return result
47
-
48
-
49
- obj = Solution () #Creating object of the class Solution
50
-
51
- #Taking inouts from the user
52
- x = float (input ("Enter the base number: " ))
53
- n = int (input ("Enter the power number: " ))
54
-
55
- #calling the function using object obj to calculate the power
56
- answer = obj .binaryExponentiation (x , n )
57
- print (answer ) #answer
1
+ # Assign values to author and version.
2
+ __author__ = "Himanshu Gupta"
3
+ __version__ = "1.0.0"
4
+ __date__ = "2023-09-03"
5
+
6
+ def binaryExponentiation (x : float , n : int ) -> float :
7
+ """
8
+ Function to calculate x raised to the power n (i.e., x^n) where x is a float number and n is an integer and it will return float value
9
+
10
+ Example 1:
11
+
12
+ Input: x = 2.00000, n = 10
13
+ Output: 1024.0
14
+ Example 2:
15
+
16
+ Input: x = 2.10000, n = 3
17
+ Output: 9.261000000000001
18
+
19
+ Example 3:
20
+
21
+ Input: x = 2.00000, n = -2
22
+ Output: 0.25
23
+ Explanation: 2^-2 = 1/(2^2) = 1/4 = 0.25
24
+ """
25
+
26
+ if n == 0 :
27
+ return 1
28
+
29
+ # Handle case where, n < 0.
30
+ if n < 0 :
31
+ n = - 1 * n
32
+ x = 1.0 / x
33
+
34
+ # Perform Binary Exponentiation.
35
+ result = 1
36
+ while n != 0 :
37
+ # If 'n' is odd we multiply result with 'x' and reduce 'n' by '1'.
38
+ if n % 2 == 1 :
39
+ result *= x
40
+ n -= 1
41
+ # We square 'x' and reduce 'n' by half, x^n => (x^2)^(n/2).
42
+ x *= x
43
+ n //= 2
44
+ return result
45
+
46
+
47
+ if __name__ == "__main__" :
48
+ print (f"Author: { __author__ } " )
49
+ print (f"Version: { __version__ } " )
50
+ print (f"Function Documentation: { binaryExponentiation .__doc__ } " )
51
+ print (f"Date: { __date__ } " )
52
+
53
+ print () # Blank Line
54
+
55
+ print (binaryExponentiation (2.00000 , 10 ))
56
+ print (binaryExponentiation (2.10000 , 3 ))
57
+ print (binaryExponentiation (2.00000 , - 2 ))
58
+
0 commit comments