-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDijkstra.java
140 lines (125 loc) · 4.24 KB
/
Dijkstra.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
package graph;
import datastructure.heap.MinHeap;
import java.util.*;
/**
* Dijkstra单源最短路径算法
*
* 时间复杂度O(E*logV)
*
* 应用场景:
* - 地图两个地点的最短路线、用时最少、最少红绿灯等
*/
public class Dijkstra {
// 顶点列表
private int[] vertexes;
// 邻接表
private Map<Integer, List<Edge>> adj;
// 边
private static class Edge {
int sid; // 边的起始顶点编号
int tid; // 边的终止顶点编号
int w; // 权重
public Edge(int sid, int tid, int w) {
this.sid = sid;
this.tid = tid;
this.w = w;
}
}
// 顶点,用于记录起始顶点到该顶点的距离
private static class Vertex implements Comparable<Vertex> {
int id; // 顶点编号
int dist; // 记录从起始顶点到这个顶点的距离
public Vertex(int id, int dist) {
this.id = id;
this.dist = dist;
}
@Override
public int compareTo(Vertex v) {
if (this.dist > v.dist) return 1;
else if (this.dist < v.dist) return -1;
return 0;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Vertex vertex = (Vertex) o;
return id == vertex.id;
}
@Override
public int hashCode() {
return Objects.hash(id);
}
}
public Dijkstra(int[] vertexes) {
this.vertexes = vertexes;
this.adj = new HashMap<>();
for (int i = 0, n = vertexes.length; i < n; i++) {
this.adj.put(vertexes[i], new LinkedList<>());
}
}
/**
* 添加边 s -> t
*/
public void addEdge(int s, int t, int w) {
this.adj.get(s).add(new Edge(s, t, w));
}
/**
* 查找顶点s到顶点t的最短路径
* @param s 起始顶点
* @param t 目标顶点
*/
public List<Integer> search(int s, int t) {
int n = this.vertexes.length;
// 用来还原最短路径
Map<Integer, Integer> predecessor = new HashMap<>();
// 初始化起始顶点到每个顶点的距离
Map<Integer, Vertex> vertexMap = new HashMap<>();
for (int i = 0; i < n; i++) {
int id = this.vertexes[i];
// 初始将距离设置为无限大
vertexMap.put(id, new Vertex(id, Integer.MAX_VALUE));
}
// 构建小顶堆
// 用来记录已经遍历到的顶点以及这个顶点与起始顶点的路径长度
MinHeap<Vertex> heap = new MinHeap<>(n);
// 标记是否进入过队列
Map<Integer, Boolean> inqueue = new HashMap<>();
vertexMap.get(s).dist = 0;
heap.add(vertexMap.get(s));
inqueue.put(s, true);
while (!heap.isEmpty()) {
// 删除堆顶元素
Vertex minVertex = heap.pop();
// 最短路径产生了
if (minVertex.id == t) break;
for (int i = 0, m = this.adj.get(minVertex.id).size(); i < m; i++) {
// 取出一条minVertex相连的边
Edge edge = this.adj.get(minVertex.id).get(i);
// minVertex -> nextVertex
Vertex nextVertex = vertexMap.get(edge.tid);
// 存在另一条更短的路径经过minVertex到nextVertex
if (minVertex.dist + edge.w < nextVertex.dist) {
nextVertex.dist = minVertex.dist + edge.w;
predecessor.put(nextVertex.id, minVertex.id);
if (inqueue.getOrDefault(nextVertex.id, false)) {
// 更新堆中的值
heap.update(nextVertex);
} else {
heap.add(nextVertex);
inqueue.put(nextVertex.id, true);
}
}
}
}
// 还原最短路径
List<Integer> result = new ArrayList<>();
int v = t;
while (v != s) {
result.add(0, v);
v = predecessor.get(v);
}
result.add(0, v);
return result;
}
}