-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcitations.bib
468 lines (452 loc) · 17.4 KB
/
citations.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
@book{shalevshwartz_2014_understanding,
author = {Shalev-Shwartz, Shai and Ben-David, Shai},
publisher = {Cambridge University Press},
title = {Understanding Machine Learning: From Theory to Algorithms},
url = {https://www.cambridge.org/core/books/understanding-machine-learning/3059695661405D25673058E43C8BE2A6},
urldate = {2022-01-04},
year = {2014},
organization = {Cambridge University Press}
}
@book{cohn_2013_measure,
author = {Cohn, Donald L},
publisher = {Birkhäuser},
title = {Measure theory},
year = {2013}
}
@book{rynne_2008_linear,
author = {Rynne, Bryan P and Youngson, Martin A},
publisher = {Springer},
title = {Linear functional analysis},
year = {2008}
}
@book{folland_1999_real,
author = {Folland, Gerald B},
publisher = {John Wiley And Sons},
title = {Real analysis : modern techniques and their applications},
year = {1999}
}
@book{ross_2015_elementary,
author = {Ross, Kenneth A and López, Jorge M},
publisher = {Springer},
title = {Elementary analysis : the theory of calculus},
year = {2015}
}
@book{wade_2014_introduction,
author = {Wade, William R},
publisher = {Pearson},
title = {Introduction to Analysis: Pearson New International Edition},
year = {2014}
}
@book{bass2011real,
title={Real Analysis for Graduate Students: Measure and Integration Theory (Version 4.2)},
author={Bass, R.F.},
isbn={9781502514455},
url={https://bass.math.uconn.edu/real.html},
year={2014},
publisher={Bass, R.F.}
}
@book{munkres_2014_topology,
author = {James Raymond Munkres},
publisher = {Pearson},
title = {Topology},
year = {2014}
}
@book{jacod_2004_probability,
author = {Jacod, Jean and Protter, Philip E},
publisher = {Springer},
title = {Probability essentials},
year = {2004}
}
@book{loukasgrafakos_2014_classical,
author = {Loukas Grafakos},
publisher = {Springer},
title = {Classical Fourier analysis},
year = {2014}
}
@inbook{bartle_measure_integration,
author = {Bartle, Robert G},
publisher = {John Wiley \& Sons, Ltd},
isbn = {9781118164471},
title = {Decomposition of Measures},
booktitle = {The Elements of Integration and Lebesgue Measure},
chapter = {8},
pages = {80-95},
doi = {https://doi.org/10.1002/9781118164471.ch8},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118164471.ch8},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118164471.ch8},
year = {1995},
keywords = {decomposing measures, Hahn decomposition theorem, negative variation, Jordan decomposition theorem, monotone convergence theorem},
abstract = {Summary This chapter contains sections titled: Riesz Representation Theorem Exercises}
}
@article{cybenko_1989_approximation,
author = {Cybenko, G.},
month = {12},
pages = {303-314},
title = {Approximation by superpositions of a sigmoidal function},
doi = {10.1007/bf02551274},
url = {https://link.springer.com/article/10.1007%2FBF02551274},
volume = {2},
year = {1989},
journal = {Mathematics of Control, Signals, and Systems}
}
@article{hornik,
title = {Multilayer feedforward networks are universal approximators},
journal = {Neural Networks},
volume = {2},
number = {5},
pages = {359-366},
year = {1989},
issn = {0893-6080},
doi = {https://doi.org/10.1016/0893-6080(89)90020-8},
url = {https://www.sciencedirect.com/science/article/pii/0893608089900208},
author = {Kurt Hornik and Maxwell Stinchcombe and Halbert White},
keywords = {Feedforward networks, Universal approximation, Mapping networks, Network representation capability, Stone-Weierstrass Theorem, Squashing functions, Sigma-Pi networks, Back-propagation networks},
abstract = {This paper rigorously establishes that standard multilayer feedforward networks with as few as one hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many hidden units are available. In this sense, multilayer feedforward networks are a class of universal approximators.}
}
@misc{lu,
author = {Lu, Zhou and Pu, Hongming and Wang, Feicheng and Hu, Zhiqiang and Wang, Liwei},
title = {The Expressive Power of Neural Networks: A View from the Width},
url = {https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf},
urldate = {2022-02-22}
}
@article{hornik_1991_approximation,
author = {Hornik, Kurt},
pages = {251-257},
title = {Approximation capabilities of multilayer feedforward networks},
doi = {10.1016/0893-6080(91)90009-t},
urldate = {2020-02-28},
volume = {4},
year = {1991},
journal = {Neural Networks}
}
@article{park_2020_minimum,
author = {Park, Sejun and Yun, Chulhee and Lee, Jaeho and Shin, Jinwoo},
month = {06},
title = {Minimum Width for Universal Approximation},
url = {https://arxiv.org/abs/2006.08859},
year = {2020},
journal = {arxiv.org}
}
@article{kidger_2020_universal,
author = {Kidger, Patrick and Lyons, Terry},
pages = {1-22},
title = {Universal Approximation with Deep Narrow Networks},
url = {https://arxiv.org/pdf/1905.08539.pdf},
urldate = {2022-02-22},
volume = {TBD},
year = {2020},
journal = {Proceedings of Machine Learning Research}
}
@book{bishop_1998_neural,
author = {Bishop, Christopher M},
publisher = {Springer},
title = {Neural networks and machine learning},
year = {1998}
}
@article{leshno_1993_multilayer,
author = {Leshno, Moshe and Lin, Vladimir Ya. and Pinkus, Allan and Schocken, Shimon},
month = {01},
pages = {861-867},
title = {Multilayer feedforward networks with a nonpolynomial activation function can approximate any function},
doi = {10.1016/s0893-6080(05)80131-5},
urldate = {2020-02-28},
volume = {6},
year = {1993},
journal = {Neural Networks}
}
@article{senior_2020_improved,
author = {Senior, Andrew W. and Evans, Richard and Jumper, John and Kirkpatrick, James and Sifre, Laurent and Green, Tim and Qin, Chongli and Žídek, Augustin and Nelson, Alexander W. R. and Bridgland, Alex and Penedones, Hugo and Petersen, Stig and Simonyan, Karen and Crossan, Steve and Kohli, Pushmeet and Jones, David T. and Silver, David and Kavukcuoglu, Koray and Hassabis, Demis},
month = {01},
pages = {706-710},
title = {Improved protein structure prediction using potentials from deep learning},
doi = {10.1038/s41586-019-1923-7},
url = {https://www.nature.com/articles/s41586-019-1923-7},
volume = {577},
year = {2020},
journal = {Nature}
}
@misc{vaswani_2017_attention,
author = {Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, Lukasz and Polosukhin, Illia},
title = {Attention Is All You Need},
url = {https://arxiv.org/abs/1706.03762},
year = {2017},
organization = {arXiv.org}
}
@article{rumelhart_1986_learning,
author = {Rumelhart, David E. and Hinton, Geoffrey E. and Williams, Ronald J.},
month = {10},
pages = {533-536},
title = {Learning representations by back-propagating errors},
doi = {10.1038/323533a0},
url = {https://www.nature.com/articles/323533a0?error=cookies_not_supported&code=2926f83e-9c3a-46a7-9b28-b3d19d46768a},
volume = {323},
year = {1986},
journal = {Nature}
}
@misc{szegedy_2014_going,
author = {Szegedy, Christian and Liu, Wei and Jia, Yangqing and Sermanet, Pierre and Reed, Scott and Anguelov, Dragomir and Erhan, Dumitru and Vanhoucke, Vincent and Rabinovich, Andrew},
title = {Going Deeper with Convolutions},
url = {https://arxiv.org/abs/1409.4842},
year = {2014},
organization = {arXiv.org}
}
@misc{goodfellow_2014_generative,
author = {Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley, David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua},
title = {Generative Adversarial Nets},
url = {https://arxiv.org/pdf/1406.2661v1.pdf},
urldate = {2019-05-31},
year = {2014}
}
@misc{silver_2017_mastering,
author = {Silver, David and Hubert, Thomas and Schrittwieser, Julian and Antonoglou, Ioannis and Lai, Matthew and Guez, Arthur and Lanctot, Marc and Sifre, Laurent and Kumaran, Dharshan and Graepel, Thore and Lillicrap, Timothy and Simonyan, Karen and Hassabis, Demis},
title = {Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm},
url = {https://arxiv.org/abs/1712.01815},
year = {2017},
organization = {arXiv.org}
}
@misc{brown_2020_language,
author = {Brown, Tom and Mann, Benjamin and Ryder, Nick and Subbiah, Melanie and Kaplan, Jared and Dhariwal, Prafulla and Neelakantan, Arvind and Shyam, Pranav and Sastry, Girish and Askell, Amanda and Agarwal, Sandhini and Herbert-Voss, Ariel and Krueger, Gretchen and Henighan, Tom and Child, Rewon and Ramesh, Aditya and Ziegler, Daniel and Wu, Jeffrey and Winter, Clemens and Hesse, Christopher and Chen, Mark and Sigler, Eric and Litwin, Mateusz and Gray, Scott and Chess, Benjamin and Clark, Jack and Berner, Christopher and Mccandlish, Sam and Radford, Alec and Sutskever, Ilya and Openai, Dario},
title = {Language Models are Few-Shot Learners},
url = {https://arxiv.org/pdf/2005.14165.pdf},
year = {2020}
}
@misc{bochkovskiy_2020_yolov4,
author = {Bochkovskiy, Alexey and Wang, Chien-Yao and Liao, Hong-Yuan},
month = {04},
title = {YOLOv4: Optimal Speed and Accuracy of Object Detection},
url = {https://arxiv.org/pdf/2004.10934.pdf},
year = {2020}
}
@misc{he_2015_deep,
author = {He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
month = {12},
title = {Deep Residual Learning for Image Recognition},
url = {https://arxiv.org/pdf/1512.03385.pdf},
year = {2015}
}
@misc{li_2020_the,
author = {Li, Mingzhen and Liu, Y and Liu, Xiaoyan and Sun, Qingxiao and You, Xin and Yang, Hailong and Luan, Zhongzhi and Gan, Lin and Yang, Guangwen and Qian, Depei and Beihang, },
month = {08},
title = {The Deep Learning Compiler: A Comprehensive Survey},
url = {https://arxiv.org/pdf/2002.03794.pdf},
urldate = {2022-02-25},
year = {2020}
}
@misc{glorot_understanding,
author = {Glorot, Xavier and Bengio, Yoshua},
title = {Understanding the difficulty of training deep feedforward neural networks},
url = {https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf}
}
@misc{he_2015_delving,
author = {He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
title = {Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification},
url = {https://arxiv.org/pdf/1502.01852.pdf},
year = {2015}
}
@misc{ruder_2017_an,
author = {Ruder, Sebastian},
month = {06},
title = {An overview of gradient descent optimization algorithms},
url = {https://arxiv.org/pdf/1609.04747.pdf},
year = {2017}
}
@article{li_2018_visualizing,
author = {Li, Hao and Xu, Zheng and Taylor, Gavin and Studer, Christoph and Goldstein, Tom},
month = {11},
title = {Visualizing the Loss Landscape of Neural Nets},
url = {https://arxiv.org/abs/1712.09913},
urldate = {2022-02-26},
year = {2018},
journal = {arXiv:1712.09913 [cs, stat]}
}
@misc{klambauer_2017_selfnormalizing,
author = {Klambauer, G and Unterthiner, T and Mayr, A and Hochreiter, S},
title = {Self-Normalizing Neural Networks},
url = {https://arxiv.org/pdf/1706.02515.pdf},
urldate = {2020-08-27},
year = {2017}
}
@misc{clevert_2015_fast,
author = {Clevert, Djork-Arné and Unterthiner, Thomas and Hochreiter, Sepp},
title = {Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)},
url = {https://arxiv.org/abs/1511.07289},
year = {2015},
organization = {arXiv.org}
}
@article{trottier_2018_parametric,
author = {Trottier, Ludovic and Giguère, Philippe and Chaib-draa, Brahim},
month = {01},
title = {Parametric Exponential Linear Unit for Deep Convolutional Neural Networks},
url = {https://arxiv.org/abs/1605.09332},
urldate = {2022-02-27},
year = {2018},
journal = {arXiv:1605.09332 [cs]}
}
@misc{bridle_training,
author = {Bridle, John},
title = {Training Stochastic Model Recognition Algorithms 211 Training Stochastic Model Recognition Algorithms as Networks can lead to Maximum Mutual Information Estimation of Parameters},
url = {https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf}
}
@book{pmlbook,
author = "Kevin P. Murphy",
title = "Probabilistic Machine Learning: An introduction",
publisher = "MIT Press",
year = 2022,
url = "probml.ai"
}
@misc{tensorflow2015-whitepaper,
title={ {TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems},
url={https://www.tensorflow.org/},
note={Software available from tensorflow.org},
author={
Mart\'{i}n~Abadi and
Ashish~Agarwal and
Paul~Barham and
Eugene~Brevdo and
Zhifeng~Chen and
Craig~Citro and
Greg~S.~Corrado and
Andy~Davis and
Jeffrey~Dean and
Matthieu~Devin and
Sanjay~Ghemawat and
Ian~Goodfellow and
Andrew~Harp and
Geoffrey~Irving and
Michael~Isard and
Yangqing Jia and
Rafal~Jozefowicz and
Lukasz~Kaiser and
Manjunath~Kudlur and
Josh~Levenberg and
Dandelion~Man\'{e} and
Rajat~Monga and
Sherry~Moore and
Derek~Murray and
Chris~Olah and
Mike~Schuster and
Jonathon~Shlens and
Benoit~Steiner and
Ilya~Sutskever and
Kunal~Talwar and
Paul~Tucker and
Vincent~Vanhoucke and
Vijay~Vasudevan and
Fernanda~Vi\'{e}gas and
Oriol~Vinyals and
Pete~Warden and
Martin~Wattenberg and
Martin~Wicke and
Yuan~Yu and
Xiaoqiang~Zheng},
year={2015},
}
@software{jax2018github,
author = {James Bradbury and Roy Frostig and Peter Hawkins and Matthew James Johnson and Chris Leary and Dougal Maclaurin and George Necula and Adam Paszke and Jake Vander{P}las and Skye Wanderman-{M}ilne and Qiao Zhang},
title = {{JAX}: composable transformations of {P}ython+{N}um{P}y programs},
url = {http://github.com/google/jax},
version = {0.2.5},
year = {2018},
}
@software{autogradgithub,
author = {Dougal Maclaurin and David Duvenaud and Matthew Johnson and Ryan P. Adams},
title = {Autograd: Reverse-mode differentiation of native {P}ython},
url = {http://github.com/HIPS/autograd},
version = {1.1.2},
year = {2015},
}
@misc{paszke_2019_pytorch,
author = {Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison, Alban and Köpf, Andreas and Yang, Edward and DeVito, Zach and Raison, Martin and Tejani, Alykhan and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith},
title = {PyTorch: An Imperative Style, High-Performance Deep Learning Library},
url = {https://arxiv.org/abs/1912.01703},
year = {2019},
organization = {arXiv.org}
}
@online{fashionmnist,
author = {Han Xiao and Kashif Rasul and Roland Vollgraf},
title = {Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms},
date = {2017-08-28},
year = {2017},
eprintclass = {cs.LG},
eprinttype = {arXiv},
eprint = {cs.LG/1708.07747},
}
@article{mnist,
title={The mnist database of handwritten digit images for machine learning research},
author={Deng, Li},
journal={IEEE Signal Processing Magazine},
volume={29},
number={6},
pages={141--142},
year={2012},
publisher={IEEE}
}
@misc{frazier_2018_a,
author = {Frazier, Peter},
title = {A Tutorial on Bayesian Optimization},
url = {https://arxiv.org/pdf/1807.02811.pdf},
year = {2018}
}
@misc{agnihotri2020exploring,
author = {Agnihotri, Apoorv and Batra, Nipun},
title = {Exploring Bayesian Optimization},
journal = {Distill},
year = {2020},
note = {https://distill.pub/2020/bayesian-optimization},
doi = {10.23915/distill.00026}
}
@misc{shirishkeskar_2017_on,
author = {Shirish Keskar, Nitish and Mudigere, Dheevatsa and Nocedal, Jorge and Smelyanskiy, Mikhail and Tak, Ping and Tang, Peter},
month = {02},
title = {ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP AND SHARP MINIMA},
url = {https://arxiv.org/pdf/1609.04836.pdf},
year = {2017}
}
@misc{hoffer_2018_train,
author = {Hoffer, Elad and Hubara, Itay and Soudry, Daniel},
month = {01},
title = {Train longer, generalize better: closing the generalization gap in large batch training of neural networks},
url = {https://arxiv.org/pdf/1705.08741.pdf},
year = {2018}
}
@book{calin_2020_deep,
author = {Calin, Ovidiu},
publisher = {Springer International Publishing},
title = {Deep Learning Architectures},
doi = {10.1007/978-3-030-36721-3},
urldate = {2022-03-09},
year = {2020},
organization = {Springer Series in the Data Sciences}
}
@article{higham_2018_deep,
author = {Higham, Catherine F. and Higham, Desmond J.},
month = {01},
title = {Deep Learning: An Introduction for Applied Mathematicians},
url = {https://arxiv.org/abs/1801.05894},
urldate = {2022-03-09},
year = {2018},
journal = {arXiv:1801.05894 [cs, math, stat]}
}
@misc{neutelings_neural,
author = {Neutelings, Izaak},
title = {Neural networks},
url = {https://tikz.net/neural_networks/},
urldate = {2022-03-10}
}
@misc{stutz_2020_illustrating,
author = {Stutz, David},
month = {06},
title = {Illustrating (Convolutional) Neural Networks in LaTeX with TikZ • David Stutz},
url = {https://davidstutz.de/illustrating-convolutional-neural-networks-in-latex-with-tikz/},
urldate = {2022-03-10},
year = {2020},
organization = {David Stutz}
}
@misc{fashionmnistgithub,
month = {11},
title = {Fashion MNIST Github},
author = {Zalando, Research},
url = {https://github.com/zalandoresearch/fashion-mnist},
year = {2020},
organization = {GitHub}
}