-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathpom.xml
133 lines (120 loc) · 4.39 KB
/
pom.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.gbif.pipelines</groupId>
<artifactId>examples</artifactId>
<version>3.0.1-SNAPSHOT</version>
<relativePath>../pom.xml</relativePath>
</parent>
<artifactId>examples-metrics</artifactId>
<packaging>jar</packaging>
<name>Pipelines :: Examples :: Metrics</name>
<description>The example demonstrates how to send Apache Beam SparkRunner metrics to ELK</description>
<dependencies>
<!-- This project -->
<!-- Dependency to custom Beam Slf4J sink -->
<dependency>
<groupId>org.gbif.pipelines</groupId>
<artifactId>beam-common</artifactId>
</dependency>
<!-- Dependency to custom Beam Options -->
<dependency>
<groupId>org.gbif.pipelines</groupId>
<artifactId>ingest-gbif-beam</artifactId>
<exclusions>
<!-- Excluded to avoid problem with Spark standalone mode and Log4j logger -->
<exclusion>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- Beam -->
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-sdks-java-core</artifactId>
</dependency>
<dependency>
<groupId>org.apache.beam</groupId>
<artifactId>beam-runners-spark-3</artifactId>
</dependency>
<!-- Hadoop -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<scope>compile</scope>
</dependency>
<!-- Spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
</dependency>
<!-- Logging -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
</dependency>
<!-- GELF adapter for Spark to send logs to ELK -->
<dependency>
<groupId>biz.paluch.logging</groupId>
<artifactId>logstash-gelf</artifactId>
</dependency>
</dependencies>
<profiles>
<profile>
<id>example-artifacts</id>
<build>
<plugins>
<!-- Shade the project into an uber jar to send to Spark -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<configuration>
<createDependencyReducedPom>true</createDependencyReducedPom>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<shadedArtifactAttached>true</shadedArtifactAttached>
<shadedClassifierName>shaded</shadedClassifierName>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>org.gbif.pipelines.examples.MetricsPipeline</mainClass>
</transformer>
</transformers>
<relocations>
<!-- To avoid guava problem in Spark cluster mode -->
<relocation>
<pattern>com.google.common</pattern>
<shadedPattern>g20.com.google.common</shadedPattern>
</relocation>
</relocations>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</profile>
</profiles>
</project>