-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMachineLearningTabs.py
399 lines (320 loc) · 14.8 KB
/
MachineLearningTabs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 21 20:10:35 2024
@author: Bobby.Azad
"""
import sys
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.svm import SVR
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
import seaborn as sns
import io
from PyQt6 import (
QtCore,
QtGui,
QtWidgets
)
from PyQt6.QtWidgets import (
QGraphicsScene,
QGraphicsPixmapItem
)
from PyQt6.QtGui import QPixmap
class MachineLearningWindow(QtWidgets.QMainWindow):
def __init__(self):
super().__init__()
self.data = None
self.svr = None
self.init_ui()
self.read_and_preprocess_data('data.csv')
def init_ui(self):
self.setWindowTitle("MachineLearningWindow")
self.resize(1169, 892)
self.centralwidget = QtWidgets.QWidget(self)
self.setCentralWidget(self.centralwidget)
self.tab_widget = QtWidgets.QTabWidget(self.centralwidget)
self.tab_widget.setGeometry(QtCore.QRect(0, 0, 1169, 892))
self.tab1 = QtWidgets.QWidget()
self.tab_widget.addTab(self.tab1, "SVR")
self.tab2 = QtWidgets.QWidget()
self.tab_widget.addTab(self.tab2, "DT/ RF/ K-NN Models")
self.tab3 = QtWidgets.QWidget()
self.tab_widget.addTab(self.tab3, "Extra Model")
self.setup_tab1()
self.setup_tab2()
self.setup_tab3()
self.setup_menu_and_status_bar()
self.retranslate_ui()
self.horizontalSlider.valueChanged.connect(self.update_label_display)
self.update_label_display()
self.trainButton.clicked.connect(self.train_model)
self.testButton.clicked.connect(self.test_model)
def setup_tab1(self):
self.setup_graphics_views(self.tab1)
self.setup_combo_box(self.tab1)
self.setup_labels(self.tab1)
self.setup_sliders(self.tab1)
self.setup_spin_boxes(self.tab1)
self.setup_buttons(self.tab1)
def setup_graphics_views(self, parent):
self.graphicsView = QtWidgets.QGraphicsView(parent)
self.graphicsView.setGeometry(QtCore.QRect(20, 310, 561, 461))
self.graphicsView2 = QtWidgets.QGraphicsView(parent)
self.graphicsView2.setGeometry(QtCore.QRect(590, 310, 561, 461))
def setup_combo_box(self, parent):
self.comboBox = QtWidgets.QComboBox(parent)
self.comboBox.setGeometry(QtCore.QRect(20, 200, 131, 22))
font = QtGui.QFont()
font.setPointSize(10)
self.comboBox.setFont(font)
self.comboBox.addItems(["linear", "poly", "rbf", "sigmoid"])
def setup_labels(self, parent):
font_bold = QtGui.QFont()
font_bold.setPointSize(10)
font_bold.setBold(True)
self.label_kernelCombo = QtWidgets.QLabel(parent)
self.label_kernelCombo.setGeometry(QtCore.QRect(20, 170, 101, 21))
self.label_kernelCombo.setFont(font_bold)
self.label_trainTestRatio = QtWidgets.QLabel(parent)
self.label_trainTestRatio.setGeometry(QtCore.QRect(20, 40, 151, 21))
self.label_trainTestRatio.setFont(font_bold)
self.labelDisplay = QtWidgets.QLabel(parent)
self.labelDisplay.setGeometry(QtCore.QRect(40, 80, 161, 20))
font_normal = QtGui.QFont()
font_normal.setPointSize(9)
self.labelDisplay.setFont(font_normal)
self.label_gammaSpinBox = QtWidgets.QLabel(parent)
self.label_gammaSpinBox.setGeometry(QtCore.QRect(420, 60, 151, 21))
self.label_gammaSpinBox.setFont(font_bold)
self.label_epsilonSpinBox = QtWidgets.QLabel(parent)
self.label_epsilonSpinBox.setGeometry(QtCore.QRect(420, 160, 151, 21))
self.label_epsilonSpinBox.setFont(font_bold)
def setup_sliders(self, parent):
self.horizontalSlider = QtWidgets.QSlider(parent)
self.horizontalSlider.setGeometry(QtCore.QRect(20, 100, 181, 22))
self.horizontalSlider.setMinimum(10)
self.horizontalSlider.setMaximum(50)
self.horizontalSlider.setOrientation(QtCore.Qt.Orientation.Horizontal)
def setup_spin_boxes(self, parent):
self.gammaSpinBox = QtWidgets.QDoubleSpinBox(parent)
self.gammaSpinBox.setGeometry(QtCore.QRect(420, 90, 121, 22))
self.gammaSpinBox.setMinimum(0.0)
self.gammaSpinBox.setMaximum(1.0)
self.gammaSpinBox.setSingleStep(0.001)
self.gammaSpinBox.setValue(0.1)
self.gammaSpinBox_2 = QtWidgets.QDoubleSpinBox(parent)
self.gammaSpinBox_2.setGeometry(QtCore.QRect(420, 190, 121, 22))
self.gammaSpinBox_2.setMinimum(0.0)
self.gammaSpinBox_2.setMaximum(1.0)
self.gammaSpinBox_2.setSingleStep(0.001)
self.gammaSpinBox_2.setValue(0.1)
def setup_buttons(self, parent):
font_bold = QtGui.QFont()
font_bold.setPointSize(9)
font_bold.setBold(True)
self.trainButton = QtWidgets.QPushButton(parent)
self.trainButton.setGeometry(QtCore.QRect(950, 790, 81, 51))
self.trainButton.setFont(font_bold)
self.testButton = QtWidgets.QPushButton(parent)
self.testButton.setGeometry(QtCore.QRect(1050, 790, 81, 51))
self.testButton.setFont(font_bold)
def setup_tab2(self):
layout = QtWidgets.QVBoxLayout(self.tab2)
self.second_model_label = QtWidgets.QLabel("Choose Model Parameters:")
font_bold = QtGui.QFont()
font_bold.setPointSize(12)
font_bold.setBold(True)
self.second_model_label.setFont(font_bold)
layout.addWidget(self.second_model_label)
self.model_combo_box = QtWidgets.QComboBox(self.tab2)
self.model_combo_box.addItems(
["Decision Tree", "Random Forest", "K-Nearest Neighbors"])
layout.addWidget(self.model_combo_box)
self.param_label1 = QtWidgets.QLabel(
"Parameter 1 (max_depth / n_estimators / n_neighbors):")
layout.addWidget(self.param_label1)
self.param_spin_box1 = QtWidgets.QSpinBox(self.tab2)
self.param_spin_box1.setRange(1, 100)
layout.addWidget(self.param_spin_box1)
self.param_label2 = QtWidgets.QLabel(
"Parameter 2 (min_samples_split / max_depth):")
layout.addWidget(self.param_label2)
self.param_spin_box2 = QtWidgets.QSpinBox(self.tab2)
self.param_spin_box2.setRange(2, 100)
layout.addWidget(self.param_spin_box2)
self.train_button2 = QtWidgets.QPushButton(
"Train Second Model", self.tab2)
layout.addWidget(self.train_button2)
self.graphics_view3 = QtWidgets.QGraphicsView(self.tab2)
layout.addWidget(self.graphics_view3)
self.train_button2.clicked.connect(self.train_second_model)
def setup_tab3(self):
"""
Use this method to setup third tab if needed.
"""
pass
def setup_menu_and_status_bar(self):
self.menubar = QtWidgets.QMenuBar(self)
self.setMenuBar(self.menubar)
self.statusbar = QtWidgets.QStatusBar(self)
self.setStatusBar(self.statusbar)
def retranslate_ui(self):
_translate = QtCore.QCoreApplication.translate
self.setWindowTitle(_translate(
"MachineLearningWindow", "Machine Learning"))
self.label_kernelCombo.setText(_translate(
"MachineLearningWindow", "Kernel Type:"))
self.label_trainTestRatio.setText(_translate(
"MachineLearningWindow", "Train/Test Data Ratio:"))
self.label_gammaSpinBox.setText(_translate(
"MachineLearningWindow", "Gamma Parameter:"))
self.label_epsilonSpinBox.setText(_translate(
"MachineLearningWindow", "Epsilon Parameter:"))
self.trainButton.setText(_translate("MachineLearningWindow", "Train"))
self.testButton.setText(_translate("MachineLearningWindow", "Test"))
def update_label_display(self):
slider_value = self.horizontalSlider.value()
test_ratio = slider_value
train_ratio = 100 - slider_value
self.labelDisplay.setText(
f"Train: {train_ratio}%, Test: {test_ratio}%")
def read_and_preprocess_data(self, file_path):
self.data = pd.read_csv(file_path)
self.data = self.data.dropna()
self.data['Yield_bushels_per_ac'] = pd.to_numeric(
self.data['Yield_bushels_per_ac'], errors='coerce')
if self.data['Yield_bushels_per_ac'].isna().any():
print("NaN values found in target column after conversion.")
self.data = self.data.dropna(subset=['Yield_bushels_per_ac'])
self.features = self.data.drop('Yield_bushels_per_ac', axis=1)
self.target = self.data['Yield_bushels_per_ac']
self.features['Zone'] = self.features['Zone'].astype(str)
numeric_features = self.features.select_dtypes(
include=['int64', 'float64']).columns
categorical_features = self.features.select_dtypes(
include=['object', 'category']).columns
preprocessor = ColumnTransformer(
transformers=[
('num', StandardScaler(), numeric_features),
('cat', OneHotEncoder(), categorical_features)
])
self.features_processed = preprocessor.fit_transform(self.features)
def train_model(self):
if self.data is None:
QtWidgets.QMessageBox.warning(
self, "No Data", "No data available for training.")
return
slider_value = self.horizontalSlider.value()
test_size = slider_value / 100.0
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
self.features_processed, self.target, test_size=test_size, random_state=42)
if pd.isna(self.y_train).any() or pd.isna(self.y_test).any():
QtWidgets.QMessageBox.warning(
self, "NaN Values", "NaN values found in target sets after split.")
return
kernel = self.comboBox.currentText()
gamma = self.gammaSpinBox.value()
epsilon = self.gammaSpinBox_2.value()
self.svr = SVR(kernel=kernel, gamma=gamma, epsilon=epsilon)
self.svr.fit(self.X_train, self.y_train)
self.plot_regression_results()
def plot_regression_results(self):
y_pred_train = self.svr.predict(self.X_train)
y_pred_test = self.svr.predict(self.X_test)
fig, ax = plt.subplots(figsize=(8, 5))
sns.scatterplot(x=self.y_test, y=y_pred_test, ax=ax,
label='Test Data', color='blue')
sns.scatterplot(x=self.y_train, y=y_pred_train, ax=ax,
label='Train Data', color='orange')
ax.plot([self.y_test.min(), self.y_test.max()], [
self.y_test.min(), self.y_test.max()], 'k--', lw=2, label='Identity Line')
ax.set_xlabel('Actual Values')
ax.set_ylabel('Predicted Values')
ax.set_title('Actual vs. Predicted Values')
ax.legend()
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
pixmap = QPixmap()
pixmap.loadFromData(buf.getvalue())
scene = QGraphicsScene()
scene.addItem(QGraphicsPixmapItem(pixmap))
self.graphicsView.setScene(scene)
fig, ax = plt.subplots(figsize=(8, 5))
sns.residplot(x=y_pred_test, y=self.y_test - y_pred_test,
lowess=True, ax=ax, color='red')
ax.set_xlabel('Predicted Values')
ax.set_ylabel('Residuals')
ax.set_title('Residuals Plot')
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
pixmap = QPixmap()
pixmap.loadFromData(buf.getvalue())
scene = QGraphicsScene()
scene.addItem(QGraphicsPixmapItem(pixmap))
self.graphicsView2.setScene(scene)
def test_model(self):
if self.data is None:
QtWidgets.QMessageBox.warning(
self, "No Data", "No data available for testing.")
return
y_pred_test = self.svr.predict(self.X_test)
r2 = r2_score(self.y_test, y_pred_test)
msg = QtWidgets.QMessageBox()
msg.setWindowTitle("Test Results")
msg.setText(f"R2 Score: {r2:.2f}")
msg.setIcon(QtWidgets.QMessageBox.Icon.Information)
msg.exec()
def train_second_model(self):
if self.data is None:
QtWidgets.QMessageBox.warning(
self, "No Data", "No data available for training.")
return
model_choice = self.model_combo_box.currentText()
param1 = self.param_spin_box1.value()
param2 = self.param_spin_box2.value()
# Example: Decision Tree
if model_choice == "Decision Tree":
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(
max_depth=param1, min_samples_split=param2)
elif model_choice == "Random Forest":
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(
n_estimators=param1, max_depth=param2)
elif model_choice == "K-Nearest Neighbors":
from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=param1)
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
self.features_processed, self.target, test_size=0.2, random_state=42)
model.fit(self.X_train, self.y_train)
y_pred_train = model.predict(self.X_train)
y_pred_test = model.predict(self.X_test)
fig, ax = plt.subplots(figsize=(12, 8))
sns.scatterplot(x=self.y_test, y=y_pred_test, ax=ax,
label='Test Data', color='blue')
sns.scatterplot(x=self.y_train, y=y_pred_train, ax=ax,
label='Train Data', color='orange')
ax.plot([self.y_test.min(), self.y_test.max()], [
self.y_test.min(), self.y_test.max()], 'k--', lw=2, label='Identity Line')
ax.set_xlabel('Actual Values')
ax.set_ylabel('Predicted Values')
ax.set_title(f'{model_choice}: Actual vs. Predicted Values')
ax.legend()
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
pixmap = QPixmap()
pixmap.loadFromData(buf.getvalue())
scene = QGraphicsScene()
scene.addItem(QGraphicsPixmapItem(pixmap))
self.graphics_view3.setScene(scene)
if __name__ == "__main__":
app = QtWidgets.QApplication(sys.argv)
mainWindow = MachineLearningWindow()
mainWindow.show()
sys.exit(app.exec())