-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsauce.py
290 lines (245 loc) · 9.59 KB
/
sauce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
"""
This is the main module for running the BERNAISE code.
More specific info will follow in a later commit.
"""
import dolfin as df
from common.cmd import help_menu, parse_command_line
from common.io import (create_initial_folders, load_checkpoint, load_mesh,
load_parameters, save_solution)
__author__ = "Gaute Linga"
cmd_kwargs = parse_command_line()
# Check if user has called for help
if cmd_kwargs.get("help", False):
help_menu()
exit()
# Import problem and default parameters
default_problem = "simple"
exec("from problems.{} import *".format(
cmd_kwargs.get("problem", default_problem)))
# Problem specific parameters
parameters.update(problem())
# Internalize cmd arguments and mesh
vars().update(import_problem_hook(**vars()))
# If loading from checkpoint, update parameters from file, and then
# again from command line arguments.
if restart_folder:
info_red("Loading parameters from checkpoint.")
load_parameters(parameters, os.path.join(restart_folder, "parameters.dat"))
internalize_cmd_kwargs(parameters, cmd_kwargs)
vars().update(parameters)
info_red("Loading mesh from checkpoint.")
mesh = load_mesh(os.path.join(restart_folder, "fields.h5"),
use_partition_from_file=True)
# Import solver functionality
exec("from solvers.{} import *".format(solver))
# Get subproblems
subproblems = get_subproblems(**vars())
# Declare finite elements
elements = dict()
for name, (family, degree, is_vector) in base_elements.items():
if is_vector:
elements[name] = df.VectorElement(family, mesh.ufl_cell(), degree)
else:
elements[name] = df.FiniteElement(family, mesh.ufl_cell(), degree)
# Declare function spaces
spaces = dict()
for name, subproblem in subproblems.items():
if len(subproblem) > 1:
spaces[name] = df.FunctionSpace(
mesh,
df.MixedElement([elements[s["element"]] for s in subproblem]),
constrained_domain=constrained_domain(**vars()))
# If there is only one field in the subproblem, don't bother with
# the MixedElement.
elif len(subproblem) == 1:
spaces[name] = df.FunctionSpace(
mesh,
elements[subproblem[0]["element"]],
constrained_domain=constrained_domain(**vars()))
else:
info_on_red("Something went wrong here!")
exit("")
# dim = mesh.topology().dim() # In case the velocity fields should be
# # segregated at some point
fields = []
field_to_subspace = dict()
field_to_subproblem = dict()
for name, subproblem in subproblems.items():
if len(subproblem) > 1:
for i, s in enumerate(subproblem):
field = s["name"]
fields.append(field)
field_to_subspace[field] = spaces[name].sub(i)
field_to_subproblem[field] = (name, i)
else:
field = subproblem[0]["name"]
fields.append(field)
field_to_subspace[field] = spaces[name]
field_to_subproblem[field] = (name, -1)
# Create initial folders for storing results
newfolder, tstepfiles = create_initial_folders(folder, restart_folder, fields,
tstep, parameters)
# Create overarching test and trial functions
test_functions = dict()
trial_functions = dict()
for name, subproblem in subproblems.items():
if len(subproblem) > 1:
test_functions[name] = df.TestFunctions(spaces[name])
trial_functions[name] = df.TrialFunctions(spaces[name])
else:
test_functions[name] = df.TestFunction(spaces[name])
trial_functions[name] = df.TrialFunction(spaces[name])
# Create work dictionaries for all subproblems
w_ = dict((subproblem, df.Function(space, name=subproblem))
for subproblem, space in spaces.items())
w_1 = dict((subproblem, df.Function(space, name=subproblem + "_1"))
for subproblem, space in spaces.items())
w_tmp = dict((subproblem, df.Function(space, name=subproblem + "_tmp"))
for subproblem, space in spaces.items())
# Shortcuts to the fields
x_ = dict()
for name, subproblem in subproblems.items():
if len(subproblem) > 1:
w_loc = df.split(w_[name])
for i, field in enumerate(subproblem):
x_[field["name"]] = w_loc[i]
else:
x_[subproblem[0]["name"]] = w_[name]
# If continuing from previously, restart from checkpoint
load_checkpoint(restart_folder, w_, w_1)
# Get boundary conditions, from fields to subproblems
bcs_tuple = create_bcs(**vars())
if len(bcs_tuple) == 3:
boundaries, bcs, bcs_pointwise = bcs_tuple
elif len(bcs_tuple) == 2:
boundaries, bcs = bcs_tuple
bcs_pointwise = None
else:
info_on_red("Wrong implementation of create_bcs.")
exit()
# Set up subdomains
subdomains = df.MeshFunction("size_t", mesh, mesh.topology().dim() - 1)
subdomains.set_all(0)
boundary_to_mark = dict()
mark_to_boundary = dict()
for i, (boundary_name, markers) in enumerate(boundaries.items()):
for marker in markers:
marker.mark(subdomains, i + 1)
boundary_to_mark[boundary_name] = i + 1
mark_to_boundary[i] = boundary_name
# Subdomains check
if dump_subdomains:
subdomains_xdmf = df.XDMFFile("subdomains_dump.xdmf")
subdomains_xdmf.write(subdomains)
# Set up dirichlet part of bcs
dirichlet_bcs = dict()
for subproblem_name in subproblems.keys():
dirichlet_bcs[subproblem_name] = []
# Neumann BCs (per field)
neumann_bcs = dict()
for field in fields:
neumann_bcs[field] = dict()
for boundary_name, bcs_fields in bcs.items():
for field, bc in bcs_fields.items():
subproblem_name = field_to_subproblem[field][0]
subspace = field_to_subspace[field]
mark = boundary_to_mark[boundary_name]
if bc.is_dbc():
dirichlet_bcs[subproblem_name].append(
bc.dbc(subspace, subdomains, mark))
if bc.is_nbc():
neumann_bcs[field][boundary_name] = bc.nbc()
# Pointwise dirichlet bcs
for field, (value, c_code) in bcs_pointwise.items():
subproblem_name = field_to_subproblem[field][0]
subspace = field_to_subspace[field]
if not isinstance(value, df.Expression):
value = df.Constant(value)
dirichlet_bcs[subproblem_name].append(
df.DirichletBC(subspace, value, c_code, "pointwise"))
# Compute some mesh related stuff
dx = df.dx
ds = df.Measure("ds", domain=mesh, subdomain_data=subdomains)
normal = df.FacetNormal(mesh)
# Initialize solutions
w_init_fields = initialize(**vars())
if w_init_fields:
for name, subproblem in subproblems.items():
w_init_vector = []
if len(subproblem) > 1:
for i, s in enumerate(subproblem):
field = s["name"]
# Only change initial state if it is given in w_init_fields.
if field in w_init_fields:
w_init_field = w_init_fields[field]
else:
# Otherwise take the default value of that field.
w_init_field = w_[name].sub(i)
# Use df.project(df.as_vector(...)) with care...
num_subspaces = w_init_field.function_space().num_sub_spaces()
if num_subspaces == 0:
w_init_vector.append(w_init_field)
else:
for j in range(num_subspaces):
w_init_vector.append(w_init_field.sub(j))
# assert len(w_init_vector) == w_[name].value_size()
w_init = df.project(df.as_vector(tuple(w_init_vector)),
w_[name].function_space(),
solver_type="gmres",
preconditioner_type="default")
else:
field = subproblem[0]["name"]
if field in w_init_fields:
w_init_field = w_init_fields[field]
else:
# Take default value...
w_init_field = w_[name]
w_init = df.project(w_init_field,
w_[name].function_space(),
solver_type="gmres",
preconditioner_type="default")
w_[name].interpolate(w_init)
w_1[name].interpolate(w_init)
# Get rhs source terms (if any)
q_rhs = rhs_source(t=t_0, **vars())
# Setup problem
vars().update(setup(**vars()))
# Problem-specific hook before time loop
vars().update(start_hook(**vars()))
stop = False
t = t_0
# Initial state to XDMF
stop = save_solution(**vars())
total_computing_time = 0.
total_num_tsteps = 0
tstep_0 = tstep
timer = df.Timer("Simulation loop")
timer.start()
while not stop:
tstep_hook(**vars())
solve(**vars())
update(**vars())
t += dt
tstep += 1
stop = save_solution(**vars())
if tstep % info_intv == 0 or stop:
info_green("Time = {0:f}, timestep = {1:d}".format(t, tstep))
split_computing_time = timer.stop()
split_num_tsteps = tstep - tstep_0
timer.start()
tstep_0 = tstep
total_computing_time += split_computing_time
total_num_tsteps += split_num_tsteps
info_cyan("Computing time for previous {0:d}"
" timesteps: {1:f} seconds"
" ({2:f} seconds/timestep)".format(
split_num_tsteps, split_computing_time,
split_computing_time / split_num_tsteps))
df.list_timings(df.TimingClear.clear, [df.TimingType.wall])
if total_num_tsteps > 0:
info_cyan("Total computing time for all {0:d}"
" timesteps: {1:f} seconds"
" ({2:f} seconds/timestep)".format(
total_num_tsteps, total_computing_time,
total_computing_time / total_num_tsteps))
end_hook(**vars())