-
Notifications
You must be signed in to change notification settings - Fork 113
/
Part2_CredScoring_Profiling.R
209 lines (172 loc) · 6.54 KB
/
Part2_CredScoring_Profiling.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
##################################################################################
# Project: Credit Scoring Analysis (petit example)
# Description: Part 2 - Feature Selection and Profiling
# Data: CleanCreditScoring.csv
# By: Gaston Sanchez
# url: www.gastonsanchez.com
#
# Note:
# Check the preprocessing steps described in
# Part1_CredScoring_Preprocessing.R
##################################################################################
# remember to change your working directory!!! (don't use mine)
# setwd("/Users/gaston/Documents/Gaston/StatsDataMining")
# read cleaned data set
dd = read.csv("CleanCreditScoring.csv", header=TRUE, stringsAsFactors=TRUE)
# ================================================================================
# Feature selection for continuous variables
# ================================================================================
# Let's start with the feature selection for continuous vars
# We'll apply Fisher's F-test between each cont. variable
# and "Status" (the response variable)
# select data frame with continuous variables
var.cont = subset(dd, select=c(Seniority, Time, Age, Expenses,
Income, Assets, Debt, Amount, Price, Finrat, Savings))
# number of continuous variables
ncon = ncol(var.cont)
# create empty vector to store results
pval.cont = rep(NA, ncon)
# get the p-values from the F-tests
for (i in 1:ncon) {
pval.cont[i] = oneway.test(var.cont[,i] ~ dd$Status)$p.value
}
# add names to pval.cont
names(pval.cont) = names(var.cont)
# by ordering the continuous variables according to their
# p-values, we get a ranking of associations with Status
# What variables could be discarded?
sort(pval.cont)
# we can get some charts to see what's going on
# let's produce some barplots in a single window
par(mfrow = c(3,4), mar = c(3,3,3,3))
for (i in 1:ncon)
{
barplot(tapply(var.cont[,i], dd$Status, mean),
main = paste("Means by", names(pval.cont)[i]), cex.main=0.9,
border = NA, col = c("steelblue", "skyblue"))
abline(h = mean(var.cont[,i]), col="gray40")
legend(0, mean(var.cont[,i]), "global mean", bty="n", text.col="gray20")
}
# ================================================================================
# Feature selection for categorical variables
# ================================================================================
# The next step is to do the feature selection for the
# categorical variables. We'll apply chi-square tests
# between each categorized variable and Status
# select data frame with categorical variables
var.cat = subset(dd, select=c(ageR, seniorityR, timeR, expensesR, incomeR,
assetsR, debtR, amountR, priceR, finratR, savingsR, Home,
Marital, Records, Job))
# number of categorical variables
ncat = ncol(var.cat)
# create vector to store results
pval.cat = rep(0, ncat)
# calculate p-values from chi-square tests
for (i in 1:ncat) {
pval.cat[i] = (chisq.test(var.cat[,i], dd$Status))$p.value
}
# add names
names(pval.cat) = names(var.cat)
# order categorical variables according
# to their dependence of Status
sort(pval.cat)
# ================================================================================
# Profiling based on continuous variables
# ================================================================================
# The next stage is a little bit trickier but it is
# also a much more interesting analysis: profiling!
# For continuous variables:
# hypothesis test comparing the mean of the group with the global mean
# We need to define a function that calculates the p-value of the
# test comparing the mean of the group with the global mean
# (this will only detect positive deviations, though)
WhoGetsWhatCon <- function(who, what)
{
# 'who-gets-what'
# who: continuous variable (eg income)
# what: categorical variable (eg Status)
# how many obs in each category
nk <- as.vector(table(what))
# total number of categories
n <- sum(nk)
# get who-mean for each category in what
xk <- tapply(who, what, mean)
# compare mean of each group with global mean
# txk follows a t-student distribution
txk <- (xk - mean(who)) / (sd(who)*sqrt((n-nk)/(n*nk)))
# p-value t-distribution
pxk <- pt(txk, n-1, lower.tail=F)
pxk
}
# matrix to store results
pvalk.con = matrix(NA, ncon, nlevels(factor(dd$Status)))
for (i in 1:ncon) {
pvalk.con[i,] = WhoGetsWhatCon(var.cont[,i], dd$Status)
}
colnames(pvalk.con) = levels(factor(dd$Status))
rownames(pvalk.con) = names(var.cont)
# show me the numbers
pvalk.con
# how would you profile "bad" clients? What about "good" clients?
# (i.e. what variables help the most to profile clients?)
sort(pvalk.con[,1])
sort(pvalk.con[,2])
# ================================================================================
# Profiling based on categorical variables
# ================================================================================
# hypothesis test comparing the mean of the group
# with the global mean (Status categories)
WhoGetsWhatCat <- function(who, what)
{
# 'who-gets-what' where:
# who: categorical (expl)
# what: categorical (resp)
# table
what_who <- table(what, who)
# total number
n <- sum(what_who)
# row margin
pk <- rowSums(what_who) / n
# column margin
pj <- colSums(what_who) / n
# proportional table by rows
# prop.table(table(who, what), margin=1)
pf <- what_who / (n*pk)
# z-test comparing proportions
pjm <- matrix(data=pj, nrow=dim(pf)[1], ncol=dim(pf)[2], byrow=T)
dpf <- pf - pjm
dvt <- sqrt(((1-pk)/(n*pk)) %*%t (pj*(1-pj)))
zkj <- dpf / dvt
# zkj follows a normal distribution
pzkj <- pnorm(zkj, lower.tail=F)
list(rowpf=pf, vtest=zkj, pval=pzkj)
}
# create list to store results
pvalk.cat = as.list(1:ncat)
for (i in 1:ncat) {
pvalk.cat[[i]] = WhoGetsWhatCat(var.cat[,i], dd$Status)$pval
}
names(pvalk.cat) = names(var.cat)
for (k in 1:nlevels(dd$Status)) {
print(paste("P-values of Status:", levels(dd$Status)[k]))
for (j in 1:ncat) {
print(names(pvalk.cat)[j])
print(sort(pvalk.cat[[j]][k,]))
cat("\n")
}
cat(rep("=", 50), "\n\n", sep="")
}
# exploratory plots
par(ask=TRUE)
par(mfrow=c(1,3))
n = nrow(dd)
for (i in 1:ncat)
{
rowprof <- WhoGetsWhatCat(var.cat[,i], dd$Status)$rowpf
marg <- table(var.cat[,i]) / n
plot(marg, type="l", ylim=c(0,0.6),
main=paste("Prop. of pos & neg by", row.names(pval.cat)[i]))
lines(rowprof[1,], col="blue")
lines(rowprof[2,], col="red")
legend("topright", c("pos","neg"), col=c("blue","red"), lty=1)
}