-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_clean.py
181 lines (138 loc) · 4.92 KB
/
data_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from data_manip import *
stop_words = set(stopwords.words('english'))
def text_cleaner(text,num):
newString = text.lower()
newString = BeautifulSoup(newString, "lxml").text
newString = re.sub(r'\([^)]*\)', '', newString)
newString = re.sub('"','', newString)
newString = ' '.join([contraction_mapping[t] if t in contraction_mapping else t for t in newString.split(" ")])
newString = re.sub(r"'s\b","",newString)
newString = re.sub("[^a-zA-Z]", " ", newString)
newString = re.sub('[m]{2,}', 'mm', newString)
if(num==0):
tokens = [w for w in newString.split() if not w in stop_words]
else:
tokens=newString.split()
long_words=[]
for i in tokens:
if len(i)>1: #removing short word
long_words.append(i)
return (" ".join(long_words)).strip()
cleaned_text = []
for t in data['Text']:
cleaned_text.append(text_cleaner(t,0))
cleaned_summary = []
for t in data['Summary']:
cleaned_summary.append(text_cleaner(t,1))
data['cleaned_text']=cleaned_text
data['cleaned_summary']=cleaned_summary
'''
import matplotlib.pyplot as plt
text_word_count = []
summary_word_count = []
# populate the lists with sentence lengths
for i in data['cleaned_text']:
text_word_count.append(len(i.split()))
for i in data['cleaned_summary']:
summary_word_count.append(len(i.split()))
length_df = pd.DataFrame({'text':text_word_count, 'summary':summary_word_count})
length_df.hist(bins = 30)
plt.show()
'''
cnt=0
for i in data['cleaned_summary']:
if(len(i.split())<=8):
cnt=cnt+1
print(cnt/len(data['cleaned_summary']))
max_text_len=30
max_summary_len=8
cleaned_text = np.array(data['cleaned_text'])
cleaned_summary = np.array(data['cleaned_summary'])
short_text = []
short_summary = []
for i in range(len(cleaned_text)):
if (len(cleaned_summary[i].split()) <= max_summary_len and len(cleaned_text[i].split()) <= max_text_len):
short_text.append(cleaned_text[i])
short_summary.append(cleaned_summary[i])
df = pd.DataFrame({'text': short_text, 'summary': short_summary})
df['summary'] = df['summary'].apply(lambda x : 'sostok '+ x + ' eostok')
from sklearn.model_selection import train_test_split
x_tr,x_val,y_tr,y_val=train_test_split(np.array(df['text']),np.array(df['summary']),test_size=0.1,random_state=0,shuffle=True)
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
#prepare a tokenizer for reviews on training data
x_tokenizer = Tokenizer()
x_tokenizer.fit_on_texts(list(x_tr))
thresh = 4
cnt = 0
tot_cnt = 0
freq = 0
tot_freq = 0
for key, value in x_tokenizer.word_counts.items():
tot_cnt = tot_cnt + 1
tot_freq = tot_freq + value
if (value < thresh):
cnt = cnt + 1
freq = freq + value
print("% of rare words in vocabulary:", (cnt / tot_cnt) * 100)
print("Total Coverage of rare words:", (freq / tot_freq) * 100)
#prepare a tokenizer for reviews on training data
x_tokenizer = Tokenizer(num_words=tot_cnt-cnt)
x_tokenizer.fit_on_texts(list(x_tr))
#convert text sequences into integer sequences
x_tr_seq = x_tokenizer.texts_to_sequences(x_tr)
x_val_seq = x_tokenizer.texts_to_sequences(x_val)
#padding zero upto maximum length
x_tr = pad_sequences(x_tr_seq, maxlen=max_text_len, padding='post')
x_val = pad_sequences(x_val_seq, maxlen=max_text_len, padding='post')
#size of vocabulary ( +1 for padding token)
x_voc = x_tokenizer.num_words + 1
print(x_voc)
#prepare a tokenizer for reviews on training data
y_tokenizer = Tokenizer()
y_tokenizer.fit_on_texts(list(y_tr))
thresh = 6
cnt = 0
tot_cnt = 0
freq = 0
tot_freq = 0
for key, value in y_tokenizer.word_counts.items():
tot_cnt = tot_cnt + 1
tot_freq = tot_freq + value
if (value < thresh):
cnt = cnt + 1
freq = freq + value
print("% of rare words in vocabulary:", (cnt / tot_cnt) * 100)
print("Total Coverage of rare words:", (freq / tot_freq) * 100)
#prepare a tokenizer for reviews on training data
y_tokenizer = Tokenizer(num_words=tot_cnt-cnt)
y_tokenizer.fit_on_texts(list(y_tr))
#convert text sequences into integer sequences
y_tr_seq = y_tokenizer.texts_to_sequences(y_tr)
y_val_seq = y_tokenizer.texts_to_sequences(y_val)
#padding zero upto maximum length
y_tr = pad_sequences(y_tr_seq, maxlen=max_summary_len, padding='post')
y_val = pad_sequences(y_val_seq, maxlen=max_summary_len, padding='post')
#size of vocabulary
y_voc = y_tokenizer.num_words +1
y_tokenizer.word_counts['sostok'],len(y_tr)
ind=[]
for i in range(len(y_tr)):
cnt=0
for j in y_tr[i]:
if j!=0:
cnt=cnt+1
if(cnt==2):
ind.append(i)
y_tr=np.delete(y_tr,ind, axis=0)
x_tr=np.delete(x_tr,ind, axis=0)
ind=[]
for i in range(len(y_val)):
cnt=0
for j in y_val[i]:
if j!=0:
cnt=cnt+1
if(cnt==2):
ind.append(i)
y_val=np.delete(y_val,ind, axis=0)
x_val=np.delete(x_val,ind, axis=0)