forked from zzzac/Rule-based-forex-trading-system
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtradingrule.py
300 lines (261 loc) · 8.9 KB
/
tradingrule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
import pandas as pd
from ta import *
def Rule1(param, OHLC):
# Rule 1: Simple Moving Average Crossover
# Input: Close prices, MA periods 1 and 2
# Return: training periods accumulated returns
ma1, ma2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = close.rolling(ma1).mean()
s2 = close.rolling(ma2).mean()
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule2(param, OHLC):
# Rule 2: EMA and close
# Input: Close prices, EMA periods 1 and 2
# Return: training periods accumulated returns
ema1, ma2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = ema(close, ema1)
s2 = close.rolling(ma2).mean()
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule3(param, OHLC):
# Rule 3: EMA and EMA
# Input: Close prices, EMA periods 1 and 2
# Return: training periods accumulated returns
ema1, ema2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = ema(close, ema1)
s2 = ema(close, ema2)
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule4(param, OHLC):
# Rule 4: DEMA and MA
dema1, ma2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = DEMA(close, dema1)
s2 = close.rolling(ma2).mean()
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule5(param, OHLC):
# Rule 5: DEMA and DEMA
dema1, dema2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = DEMA(close, dema1)
s2 = DEMA(close, dema2)
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule6(param, OHLC):
# Rule 6: TEMA and ma crossovers
tema1, ma2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = TEMA(close, tema1)
s2 = close.rolling(ma2).mean()
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule7(param, OHLC):
stoch1, stochma2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = stoch(high, low, close, stoch1)
s2 = s1.rolling(stochma2, min_periods=0).mean()
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule8(param, OHLC):
vortex1, vortex2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = vortex_indicator_pos(high, low, close, vortex1)
s2 = vortex_indicator_neg(high, low, close, vortex2)
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule9(param, OHLC):
p1, p2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = ichimoku_a(high, low, n1=p1, n2=round((p1+p2)/2))
s2 = ichimoku_b(high, low, n2=round((p1+p2)/2), n3=p2)
s3 = close
signal = (-1*((s3>s1) & (s3>s2))+1*((s3<s2) & (s3<s1))).shift(1)
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
# Type 2 Rules:
# > RSI
# > CCI *High must be greater than low
def Rule10(param, OHLC):
rsi1, c2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = rsi(close, rsi1)
s2 = c2
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule11(param, OHLC):
cci1, c2 = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = cci(high, low, close, cci1)
s2 = c2
signal = 2*(s1<s2).shift(1)-1
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
# Type 3 Rules:
# > RSI
# > CCI
# ** High must be greater than low
def Rule12(param, OHLC):
rsi1, hl, ll = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = rsi(close, rsi1)
signal = (-1*(s1>hl)+1*(s1<ll)).shift(1)
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule13(param, OHLC):
cci1, hl, ll = param
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = cci(high, low, close, cci1)
signal = (-1*(s1>hl)+1*(s1<ll)).shift(1)
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
# Type 4 Rules:
# > Bollinger-bands high, low
# > keltner_channel
# > donchian_channel
# > ichimoko a and b
def Rule14(period, OHLC):
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = keltner_channel_hband(high, low, close, n=period)
s2 = keltner_channel_lband(high, low, close, n=period)
s3 = close
signal = (-1*(s3>s1)+1*(s3<s2)).shift(1)
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule15(period, OHLC):
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = donchian_channel_hband(close, n=period)
s2 = donchian_channel_hband(close, n=period)
s3 = close
signal = (-1*(s3>s1)+1*(s3<s2)).shift(1)
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def Rule16(period, OHLC):
open, high, low, close = OHLC
logr = np.log(close/close.shift(1))
s1 = bollinger_hband(close, n=period)
s2 = bollinger_lband(close, n=period)
s3 = close
signal = (-1*(s3>s1)+1*(s3<s2)).shift(1)
port_logr = signal*logr
return (abs(port_logr.sum()), signal)
def trainTradingRuleFeatures(df):
'''
input: df, a dataframe contains OHLC columns
output: Rule_params, the parameters for 16 trading rules
'''
OHLC = [df.Open, df.High, df.Low, df.Close]
periods = [1, 3, 5, 7, 11, 15, 19, 23, 27, 35, 41, 50, 61]
type1 = [Rule1, Rule2, Rule3, Rule4, Rule5, Rule6, Rule7, Rule8, Rule9]
type1_param = []
type1_score = []
for rule in type1:
best = -1
for i in range(len(periods)):
for j in range(i, len(periods)):
param = (periods[i], periods[j])
score = rule(param, OHLC)[0]
if score>best:
best = score
best_param = (periods[i], periods[j])
type1_param.append(best_param)
type1_score.append(best)
rsi_limits = list(range(0,101,5))
cci_limits = list(range(-120, 121, 20))
limits = [rsi_limits, cci_limits]
type2 = [Rule10, Rule11]
type2_param = []
type2_score = []
for i in range(len(type2)):
rule = type2[i]
params = limits[i]
best = -1
for period in periods:
for p in params:
param = (period, p)
score = rule(param, OHLC)[0]
if score > best:
best = score
best_param = (period, p)
type2_param.append(best_param)
type2_score.append(best)
type3 = [Rule12, Rule13]
type3_param = []
type3_score = []
for i in range(len(type3)):
rule = type3[i]
params = limits[i]
n = len(params)
best = -1
for period in periods:
for lb in range(n-1):
for ub in range(lb+1, n):
param = (period, params[ub], params[lb])
score = rule(param, OHLC)[0]
if score>best:
best = score
best_param = (period, params[ub], params[lb])
type3_param.append(best_param)
type3_score.append(best)
type4 = [Rule14, Rule15, Rule16]
type4_param = []
type4_score = []
for rule in type4:
best = -1
for i in periods:
score = rule(i, OHLC)[0]
if score>best:
best = score
best_param = i
type4_param.append(best_param)
type4_score.append(best)
All_Rules = type1+type2+type3+type4
Rule_params = type1_param+type2_param+type3_param+type4_param
Rule_scores = type1_score+type2_score+type3_score+type4_score
for i in range(len(All_Rules)):
print('Training Rule{} score is: {:.3f}'.format(i+1, Rule_scores[i]))
return Rule_params
def getTradingRuleFeatures(df, Rule_params):
'''
input: df, a dataframe contains OHLC columns
Rule_params, the parameters for 16 trading rules
output: trading_rule_df, a new dataframe contains the trading rule features only.
'''
OHLC = [df.Open, df.High, df.Low, df.Close]
logr = np.log(df.Close/df.Close.shift(1))
All_Rules = [Rule1, Rule2, Rule3, Rule4, Rule5, Rule6, Rule7, Rule8, Rule9, Rule10, Rule11, \
Rule12, Rule13, Rule14, Rule15, Rule16]
trading_rule_df = pd.DataFrame({'logr': logr})
for i in range(len(All_Rules)):
trading_rule_df['Rule'+str(i+1)] = All_Rules[i](Rule_params[i], OHLC)[1]
trading_rule_df.dropna(inplace = True)
return trading_rule_df