From 4cf6bf5d4c92d1043026a73a7fff6a39e1621f28 Mon Sep 17 00:00:00 2001 From: Gal Pressman Date: Wed, 20 Sep 2017 17:32:16 +0300 Subject: [PATCH] Add support for importable histogram print function Running histogram.py on a data file is cool, but most of my data is kept in local variables in scripts. Introduce print_histogram function which accepts a list of samples and prints the same histogram it would as if the list was exported to a file. Issue: #37 Signed-off-by: Gal Pressman --- data_hacks/__init__.py | 0 data_hacks/histogram.py | 50 ++++++++++++++++++++++++----------------- 2 files changed, 30 insertions(+), 20 deletions(-) create mode 100644 data_hacks/__init__.py diff --git a/data_hacks/__init__.py b/data_hacks/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/data_hacks/histogram.py b/data_hacks/histogram.py index 3d16cc8..512854f 100755 --- a/data_hacks/histogram.py +++ b/data_hacks/histogram.py @@ -121,27 +121,29 @@ def test_median(): assert "4.50" == "%.2f" % median([4.0, 5, 2, 1, 9, 10]) -def histogram(stream, options): +def _histogram(stream, minimum=None, maximum=None, num_buckets=None, logscale=False, + custbuckets=None, calc_mvsd=True, + bucket_format='%10.4f', calc_percentage=False, dot='∎'): """ Loop over the stream and add each entry to the dataset, printing out at the end. stream yields Decimal() """ - if not options.min or not options.max: + if not minimum or not maximum: # glob the iterator here so we can do min/max on it data = list(stream) else: data = stream bucket_scale = 1 - if options.min: - min_v = Decimal(options.min) + if minimum: + min_v = Decimal(minimum) else: min_v = min(data, key=lambda x: x.value) min_v = min_v.value - if options.max: - max_v = Decimal(options.max) + if maximum: + max_v = Decimal(maximum) else: max_v = max(data, key=lambda x: x.value) max_v = max_v.value @@ -151,11 +153,9 @@ def histogram(stream, options): diff = max_v - min_v boundaries = [] - bucket_counts = [] - buckets = 0 - if options.custbuckets: - bound = options.custbuckets.split(',') + if custbuckets: + bound = custbuckets.split(',') bound_sort = sorted(map(Decimal, bound)) # if the last value is smaller than the maximum, replace it @@ -174,8 +174,8 @@ def histogram(stream, options): # so no need to do a -1! bucket_counts = [0 for x in range(len(boundaries))] buckets = len(boundaries) - elif options.logscale: - buckets = options.buckets and int(options.buckets) or 10 + elif logscale: + buckets = num_buckets and int(num_buckets) or 10 if buckets <= 0: raise ValueError('# of buckets must be > 0') @@ -202,7 +202,7 @@ def log_steps(k, n): for step in log_steps(buckets, diff): boundaries.append(min_v + step) else: - buckets = options.buckets and int(options.buckets) or 10 + buckets = num_buckets and int(num_buckets) or 10 if buckets <= 0: raise ValueError('# of buckets must be > 0') step = diff / buckets @@ -216,7 +216,7 @@ def log_steps(k, n): accepted_data = [] for record in data: samples += record.count - if options.mvsd: + if calc_mvsd: mvsd.add(record.value, record.count) accepted_data.append(record) # find the bucket this goes in @@ -237,15 +237,14 @@ def log_steps(k, n): if skipped: print("# %d value%s outside of min/max" % (skipped, skipped > 1 and 's' or '')) - if options.mvsd: + if calc_mvsd: print("# Mean = %f; Variance = %f; SD = %f; Median %f" % (mvsd.mean(), mvsd.var(), mvsd.sd(), median(accepted_data, key=lambda x: x.value))) - print "# each " + options.dot + " represents a count of %d" % bucket_scale - bucket_min = min_v + print "# each " + dot + " represents a count of %d" % bucket_scale bucket_max = min_v percentage = "" - format_string = options.format + ' - ' + options.format + ' [%6d]: %s%s' + format_string = bucket_format + ' - ' + bucket_format + ' [%6d]: %s%s' for bucket in range(buckets): bucket_min = bucket_max bucket_max = boundaries[bucket] @@ -253,13 +252,24 @@ def log_steps(k, n): star_count = 0 if bucket_count: star_count = bucket_count / bucket_scale - if options.percentage: + if calc_percentage: percentage = " (%0.2f%%)" % (100 * Decimal(bucket_count) / Decimal(samples)) - print format_string % (bucket_min, bucket_max, bucket_count, options.dot * + print format_string % (bucket_min, bucket_max, bucket_count, dot * star_count, percentage) +def histogram(stream, options): + _histogram(stream, options.min, options.max, options.buckets, options.logscale, + options.custbuckets, options.mvsd, options.format, options.percentage, + options.dot) + + +def print_histogram(samples, **kwargs): + stream = '\n'.join([str(x) for x in samples]) + _histogram(load_stream(stream, False, False), **kwargs) + + if __name__ == "__main__": parser = OptionParser() parser.usage = "cat data | %prog [options]"