-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
177 lines (139 loc) · 4.66 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn.functional as nnf
import torchvision.transforms as transforms
from PIL import Image
from flask import Flask, jsonify, request
from flask_cors import CORS
from model.network import Network
from model.network2 import RecipeModelV2, resnetnew
from model.util import get_default_device, to_device, imagenet_stats, decode_target, load_classes
app = Flask(__name__)
CORS(app)
classes = []
with open('data/unique_cats_jan.txt') as f:
for line in f:
classes.append(line.strip())
food_classes = []
with open('data/food-101/meta/classes.txt') as f:
for line in f:
food_classes.append(line.strip())
device = get_default_device()
#
# model = Network(classes)
# model.load_state_dict(torch.load('data/model_checkpoint.pth'))
# model.eval()
print("classes", len(classes))
model2 = to_device(RecipeModelV2(3, len(classes)), device)
model2.load_state_dict(torch.load('data/model2_checkpoint_old_data_26_batchsize.pth', map_location=torch.device(device)))
model2.eval()
# model3 = to_device(resnetnew(len(food_classes), pretrained=False), device)
# model3.load_state_dict(torch.load('data/model3_checkpoint.pth'))
# model3.eval()
def transform_image(file):
trans = transforms.Compose([
transforms.Resize(36),
transforms.CenterCrop(32),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
image = Image.open(file)
tensor = trans(image)
tensor.unsqueeze_(0)
return tensor
def transform_image_v2(file):
trans = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(*imagenet_stats)
])
image = Image.open(file)
tensor = trans(image)
tensor.unsqueeze_(0)
return tensor
def transform_image_v3(file):
trans = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize(*imagenet_stats)
])
image = Image.open(file)
tensor = trans(image)
tensor.unsqueeze_(0)
return tensor
# def get_pred(tensor, n=5):
# outputs = model.forward(tensor)
# prob = nnf.softmax(outputs, dim=1)
# top_p, top_class = prob.topk(n, dim=1)
# return list(zip(top_p.tolist()[0], top_class.tolist()[0]))
def get_pred_v2(tensor, threshold=0.5):
outputs = model2(tensor)
print(outputs)
prediction = outputs[0]
return decode_target2(prediction, classes, threshold=threshold)
def decode_target2(target, classes, threshold=0.5):
print(target)
result = []
for idx, item in enumerate(target):
# Only return label if threshold >= 0.5
if item >= threshold:
result.append([classes[idx], float(item)])
return result
#
# def get_pred_v3(tensor, threshold=0.5):
# outputs = model3(tensor)
# print(outputs)
# prediction = outputs[0]
# return decode_target(prediction, food_classes, threshold=threshold)
def render_pred(pred):
probs = []
for (prob, id) in pred:
name = classes[id]
probs.append((name, prob))
return probs
def response(data):
res = jsonify(data)
res.headers.add('Access-Control-Allow-Origin', '*')
return res
@app.route("/", methods=['GET'])
def hello_world():
res = jsonify({'hi': 2})
return res
@app.route("/categories", methods=['GET'])
def get_categories():
return response({'categories': load_classes()})
@app.route('/user-validation', methods=['POST'])
def user_validation():
file = request.files['file']
category = request.form.get('category')
if file is not None:
return response({'msg': 'success'})
return response({'msg': 'No input file given.'})
# @app.route('/pred', methods=['POST'])
# def predict():
# file = request.files['file']
# if file is not None:
# tensor = transform_image(file)
# pred = get_pred(tensor)
# probs = render_pred(pred)
# return response({'prediction': probs})
#
# return response({'msg': 'No input file given.'})
@app.route('/v2/pred', methods=['POST'])
def predict2():
file = request.files['file']
if file is not None:
tensor = to_device(transform_image_v2(file), device)
print(tensor.size())
pred = get_pred_v2(tensor, threshold=0.1)
return response({'prediction': pred})
return response({'msg': 'No input file given.'})
# @app.route('/v3/pred', methods=['POST'])
# def predict3():
# file = request.files['file']
# if file is not None:
# tensor = to_device(transform_image_v3(file), device)
# pred = get_pred_v3(tensor, threshold=0.1)
# return response({'prediction': pred})
#
# return response({'msg': 'No input file given.'})