Skip to content

Latest commit

 

History

History
37 lines (27 loc) · 2.15 KB

README.md

File metadata and controls

37 lines (27 loc) · 2.15 KB

SD Explorer

DOI

Exploration of Stable Diffusion spaces (prompt embedding and diffusion noise spaces) via pytorch, python code and examples.

By Giuseppe Insana, December 2022

Requirements

torch, transfomers, diffusers, safetensors, PIL, matplotlib

Usage

Clone the repository and run the provided jupyter notebook.

Tutorial

Code and usage examples are all in the provided jupyter notebook. All the main functions have documentation on their usage and arguments.

Note: if the version on github is not rendering properly, try this one, via nbviewer.jupyter.org to preview the notebook before you run it on your environment (note: it jumps to usage examples).

Examples and main functionalities

  • Simple text2img and repeated sampling prompt2img([prompt1, prompt2], seed=seed, n_samples=3)
  • Interpolation between text prompts interpolate_prompts([prompt1, prompt2], interpolate_steps=5) From boy to car
  • Walking in embedding space beyond the correct point produced by a prompt images = beyond_prompt(prompt, walk_steps=8, walk_stepsize=0.01) green hair girl eating noodles
  • Circular or spiral spherical walks through the diffusion noise space with 2 or 3 seeds revolve_prompt(prompt, walk_steps=walk_steps, seed=seed, seed2=seed2) horses circular walk Click to play horses circular walk animation
  • Multiple variations over a prompt prompt_variations(prompt, variations=8)
  • Gradual interpolation between variations variate_prompt(prompt=prompt, seed=seed, seed2=seed2, var_steps=6) Terminator on a vespa

Inspiration

A walk through latent space with Stable Diffusion