-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgesture_detector.py
212 lines (161 loc) · 7.03 KB
/
gesture_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
import cv2
import numpy as np
import argparse
import os
from utils import clPreProcessing
from utils import clTraningSetManager
from utils import ContourDetector
from utils import clAutoCalibrate
from utils import clHogDetector
# main loop
if __name__ == "__main__":
# process cmd line arguments
parser = argparse.ArgumentParser()
parser.add_argument('-l', type=str, required=True, metavar='labelfile', help='label file, like ./label.txt')
parser.add_argument('-t', type=str, required=False, metavar='trainedfile',
help='file which holds the trained values like, ./data.xml')
parser.add_argument('-cmd', type=str, metavar='commands', dest='choises',
choices=['retrain', 'savedetections', 'creatlabelfile', 'run'], default='run',
help='commands available for processing: [retrain, savedetections, creatlabelfile, run], default=run')
parser.add_argument('-d', type=int, metavar='detectionswindow', default=0, choices=[0,1],
help='show/ hide detection window [0,1], default=0')
parser.add_argument('-c', type=int, metavar='cameraid', default=0, choices=[0,1],
help='use different camera ID, default=0')
parser.add_argument('-s', type=int, metavar='samplesize', default=96, choices=[32,64,96,192],
help='select the training sample size, default=96')
parser.add_argument('-dir', type=str, required=False, metavar='traindirectory', help='directory with ordered pictures per detection classes')
parser.add_argument('-dd', type=str, required=False, metavar='detectiondir', help='directory to save the detections or image patches for training set creation')
parser.add_argument('-ani', type=int, required=False, metavar='annotatedimages', default=0, choices=[0,1],
help='save annotated images, [0,1] default=0')
parser.add_argument('-sf', type=int, required=False, metavar='saveframe', default=0, choices=[0,1],
help='save original camera frames, [0,1] default=0')
parser.add_argument('-sp', type=int, required=False, metavar='savepatches', default=0, choices=[0,1],
help='save image detections (patches), [0,1] default=0')
parser.add_argument('-cal', type=int, required=False, metavar='calibration', default=0, choices=[0,1],
help='reclalibrate skin color detection, [0,1] default=0')
args = parser.parse_args()
cmd = args.choises
# define image dimensions
IMG_WIDTH = 320
IMG_HEIGHT = 240
CAMID = args.c
SAMPLESIZE = args.s
labelfile = args.l
trainedfile = args.t
traindir = args.dir
detectionsdir = args.dd
# create named window, set position
cv2.namedWindow('img', 2)
cv2.moveWindow('img', 0, 0)
# create cam instance
cam0 = cv2.VideoCapture(CAMID)
# resize, to spare CPU load
cam0.set(3, IMG_WIDTH)
cam0.set(4, IMG_HEIGHT)
# create empty images
img0 = np.zeros((IMG_WIDTH,IMG_HEIGHT,3),dtype=np.byte)
imgd = np.zeros([IMG_HEIGHT, IMG_WIDTH, 3], dtype=np.uint8)
# pre-processing
objPP = clPreProcessing(img0, False, 150, 66, 66)
# contour detector
cd = ContourDetector()
# object for data set handling
tsm = clTraningSetManager()
# skin color autocalibration
ac = clAutoCalibrate()
if args.cal == 1:
#load calibration values from a file
val = tsm.LoadLabelsFile(labelfile,True)
objPP.SetColorFilteringThresholds(int(val[0]), int(val[1]), int(val[2]))
if cmd == 'run':
if labelfile is None:
print ("Labels file is missing, use -h for available arguments")
os._exit(0)
# load labels file
lf = tsm.LoadLabelsFile(labelfile)
if trainedfile is None:
print ("Training file is missing, use -h for available arguments")
os._exit(0)
#load trained file
det = clHogDetector(SAMPLESIZE,trainedfile)
det.UpdateLabelNames(lf)
elif cmd =='retrain':
if labelfile is None:
print("Labels file is missing, use -h for available arguments")
os._exit(0)
if trainedfile is None:
print ("Trained file is missing, use -h for available arguments")
os._exit(0)
det = clHogDetector(SAMPLESIZE)
# load labels file
lf = tsm.LoadLabelsFile(labelfile)
# load training set
for i in lf:
uid = i[0]
label = i[1]
path = i[2]
det.AddToTrainingSet(path, int(uid), label)
# update label names
det.UpdateLabelNames(lf)
# train SVM
det.TrainSVMWithHOG(SAMPLESIZE)
# save trained file
det.SaveTrainingData(trainedfile)
elif cmd == 'creatlabelfile':
if traindir is None:
print("Argument with training directory is missing, use -h for available arguments")
os._exit(0)
else:
tsm.SaveLabelsFile(traindir, labelfile)
print ("Labelfile " + labelfile + " created, exiting.")
os._exit(0)
elif cmd == 'savedetections':
# show helper windows and save detections to a folder
if detectionsdir is None:
print("Argument with detections directory is missing, use -h for available arguments")
os._exit(0)
else:
print("Detections will be save in: " + detectionsdir)
args.d = 1
while (True):
_, img0 = cam0.read()
# test cam instances
if (cam0):
img = objPP.CombineDetections(img0)
img = objPP.processFilter(img)
aa = cd.CotourFilter(img,500.0)
rois = cd.GetRoiForDetections(img0,aa,0)
imgd = np.zeros([IMG_HEIGHT, IMG_WIDTH, 3],dtype=np.uint8)
imgd = cd.ShowRoisOnImage(imgd,rois)
val = det.ClassifyRoi(rois, SAMPLESIZE)
if args.cal is 0:
img = cd.DrawDetections(img0, aa, 0, True, True, val,False)
else:
img = ac.RunCalibration(img0)
if detectionsdir is not None:
if args.sp == 1:
cd.SaveImages(img0, rois,detectionsdir)
if args.ani == 1:
cd.SaveImages(img, [], detectionsdir,prefix="ani_")
if args.sf == 1:
cd.SaveImages(img0, [], detectionsdir,prefix="sf_")
cv2.imshow('img', img)
if args.d == 1:
cv2.imshow('imgd', imgd)
k = cv2.waitKey(1) & 0xFF
# quit on keypress
if k == ord('q'):
break
# calibrate
if k == ord('c'):
if args.cal is not 0:
# save calibration values
val = ac.ProvideClaibParams()
objPP.SetColorFilteringThresholds(int(val[0]), int(val[1]), int(val[2]))
tsm.SaveCalibration(labelfile, val)
#exit
break
# release cam
cam0.release()
cv2.destroyAllWindows()