-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfinetune_HRVS_sp16.py
executable file
·362 lines (287 loc) · 14.5 KB
/
finetune_HRVS_sp16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from __future__ import print_function
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import torch.nn.functional as F
import skimage
import skimage.io
import skimage.transform
import numpy as np
import time
import math
import shutil
from utils import *
from glob import glob
from dataloader import listfiles as ls
from dataloader import MiddleburyLoader as DA
# from utils import logger, save_res
from models import *
parser = argparse.ArgumentParser(description='PSMNet')
parser.add_argument('--maxdisp', type=int ,default=768,
help='maxium disparity')
parser.add_argument('--model', default='prePSMNet_small',
help='select model')
parser.add_argument('--datapath', default='/home/fuy34/stereo_data/',
help='datapath')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train')
parser.add_argument('--batchsize', type=int, default=4, #https://github.com/JiaRenChang/PSMNet/issues/73
help='number of epochs to train(default:12 or 8)')
parser.add_argument('--test_batchsize', type=int, default=4, #https://github.com/JiaRenChang/PSMNet/issues/73
help='number of epochs to train(default:12 or 8)')
parser.add_argument('--preTrain_spixel', default= './preTrain_spixel_old/',
help='preTrain model')
parser.add_argument('--loadmodel', default=#'/data/Fengting/stereo_training/SPPSMNet/useful_sceneflow/joint_sp4_spW0.1_mW15_ep13_b8/best_model.tar',
'/data/Fengting/stereo_training/SPPSMNet/useful_sceneflow/jointTrain_sp4only_spw0.1_posw15/best_model.tar',
help='load model')
parser.add_argument('--logname', default='my_finetue_tst',
help='log name')
parser.add_argument('--savemodel', default='/data/Fengting/stereo_training/SPPSMNet/useful_HRVS/',
help='save model')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--m_w', type=float, default=30,
help='slic position weight')
parser.add_argument('--sp_w', type=float, default=0.1,
help='spixel loss weight')
parser.add_argument('--sz_list', type=float, default= [16], #, 8, 16
help='spixel loss weight')
parser.add_argument('--train_img_height', '-t_imgH', default=256*4, #384,
type=int, help='img height')
parser.add_argument('--train_img_width', '-t_imgW', default= 512*4, #768,
type=int, help='img width')
parser.add_argument('--val_img_height', '-v_imgH', default=2048, #512 368 2048, 1792
type=int, help='img height_must be 16*n') #
parser.add_argument('--val_img_width', '-v_imgW', default= 2432, #960 1232 3072, 2240
type=int, help='img width must be 16*n')
parser.add_argument('--epoch_size', default=1e5, #960
type=int, help='img width must be 16*n')
parser.add_argument('--continue_train', action='store_true', default=False,
help='continue training')
parser.add_argument('--recFre', type=int, default=4,
help='recording training status frequence (epoch)')
parser.add_argument('--saveFre', type=int, default=10,
help='recording checkpoint frequence (epoch)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
left_img_hr, right_img_hr, left_disp_hr,test_left_img, test_right_img, test_left_disp= ls.dataloader( args.datapath+'/HR_VS/carla-highres/trainingF/', typ='trainval', b_HRonly=True)
all_left_img = left_img_hr
all_right_img = right_img_hr
all_left_disp = left_disp_hr
train_epoch_size = min(args.epoch_size* args.batchsize, len(all_left_img)) #only for debug
val_epoch_size = min(args.epoch_size * args.batchsize, len(test_left_disp))
TrainImgLoader = torch.utils.data.DataLoader(
DA.myImageFloder(all_left_img[:train_epoch_size],all_right_img[:train_epoch_size],all_left_disp[:train_epoch_size], True,
hw_list=[args.train_img_height,args.train_img_width,args.val_img_height,args.val_img_width]),
batch_size= args.batchsize, shuffle= True, num_workers= 4, drop_last=True)
TestImgLoader = torch.utils.data.DataLoader(
DA.myImageFloder(test_left_img[:val_epoch_size],test_right_img[:val_epoch_size],test_left_disp[:val_epoch_size], False,
hw_list=[args.train_img_height,args.train_img_width,args.val_img_height,args.val_img_width]),
batch_size= args.test_batchsize, shuffle= False, num_workers= 4, drop_last=True)
if args.model == 'prePSMNet':
# model = prePSMNet(args, None, b_finetune= True)
pass
elif args.model == 'prePSMNet_small':
model = prePSMNet_small(args, None, b_finetune=True)
else:
print('no model')
if args.cuda:
torch.backends.cudnn.benchmark = True
model = nn.DataParallel(model)
model.cuda()
train_params = [param for name, param in model.named_parameters() if param.requires_grad and not 'spixel' in name]
spixel_params = [param for name, param in model.named_parameters() if param.requires_grad and 'spixel' in name ] #and 'spixel4' not in name
optimizer = optim.Adam( [
{'params': train_params},
{'params': spixel_params, 'weight_decay': 4e-4, 'lr':0.0001}
], lr=0.001, betas=(0.9, 0.999)) #{'params': [s1, s2]}, {'params': spixel_params, 'weight_decay': 4e-4}
# optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999))
spixel_ckpts = args.preTrain_spixel+'/smallNet_16.tar'
if args.loadmodel is not None:
if args.continue_train:
state_dict = torch.load(args.loadmodel)
model.load_state_dict(state_dict['state_dict'])
start_epoch = state_dict['start_epoch']
optimizer.load_state_dict(state_dict['optimz_state'])
best_err = state_dict['best_err']
max_epo = state_dict['max_epo']
total_iters = (start_epoch-1) * len(TrainImgLoader)
else:
state_dict = torch.load(args.loadmodel)
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in state_dict['state_dict'].items() if 'spixel4' not in k}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
model.module.spixel4.load_state_dict(torch.load(spixel_ckpts)['state_dict'])
start_epoch = 1
best_err = 1e4
total_iters = 0
max_acc, max_epo = 0, 0
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
def train(imgL,imgR,disp_L):
model.train()
imgL = Variable(torch.FloatTensor(imgL))
imgR = Variable(torch.FloatTensor(imgR))
disp_L = Variable(torch.FloatTensor(disp_L))
if args.cuda:
imgL, imgR, disp_L = imgL.cuda(), imgR.cuda(), disp_L.cuda()
#---------
# mask = (disp_true > 0) & (disp_true < args.maxdisp)
# mask.detach_()
#----
optimizer.zero_grad()
outputs = model(imgL,imgR, disp_L, b_joint=True)
output1 = outputs[0][0] # torch.squeeze(outputs[0], 1)
output2 = outputs[1][0] # torch.squeeze(outputs[1], 1)
output3 = outputs[2][0] # torch.squeeze(outputs[2], 1)
# disp_loss = 0.5*F.smooth_l1_loss(output1[mask], disp_true[mask], size_average=True) + 0.7*F.smooth_l1_loss(output2[mask], disp_true[mask], size_average=True) + F.smooth_l1_loss(output3[mask], disp_true[mask], size_average=True)
disp_loss = (0.5 * output1.sum() + 0.7 * output2.sum() + output3.sum())/args.batchsize
loss_col = 0
loss_pos = 0
errs = outputs[3]
# loss_map_R = outputs[4]
for i in range(len(args.sz_list)): # todo 5
a = errs[0].sum() / args.batchsize
b = args.m_w /(args.sz_list[i]) * errs[1].sum() / args.batchsize # math.sqrt
loss_col += a
loss_pos += b
print("level {}, loss_col: {} loss_pos: {}".format(i, args.sp_w * a, args.sp_w * b))
spixle_loss = args.sp_w * (loss_col + loss_pos)
loss = disp_loss + spixle_loss
viz = {}
viz['final_output'] = outputs[2][1].detach().cpu().numpy()
viz['sp_assign_L'] = [outputs[5]]
viz["spixel_idx_list"] = outputs[7]
viz['mask'] = outputs[-1].cpu().numpy()
loss.backward()
optimizer.step()
return loss.item(), disp_loss.item(), args.sp_w * loss_col.item(), args.sp_w * loss_pos.item(), viz #0, 0, viz #
def test(imgL,imgR,disp_true):
model.eval()
imgL = Variable(torch.FloatTensor(imgL))
imgR = Variable(torch.FloatTensor(imgR))
if args.cuda:
imgL, imgR, disp_true = imgL.cuda(), imgR.cuda(), disp_true.cuda()
with torch.no_grad():
outputs = model(imgL,imgR)
mask = (disp_true > 0)
output3 = torch.squeeze(outputs[0], 1) #
pred_disp = output3#.data.cpu()
viz = {}
viz['final_output'] = output3.detach().cpu().numpy()
viz['mask'] = (disp_true>0).type(torch.float).detach().cpu().numpy()
viz['sp_assign_L'] = [outputs[1]]
# viz['sp_assign_R'] = outputs[2]
viz["spixel_idx_list"] = outputs[3]
#computing 3-px error#
if len(disp_true[mask]) == 0:
loss = 0
else:
loss = torch.sum(torch.abs(pred_disp[mask] - disp_true[mask])) / torch.sum(
mask.type(torch.float)) # end-point-error
return loss, viz
def adjust_learning_rate(optimizer, epoch):
if epoch <= 150:
lr = 0.001
else:
lr = 0.0001
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print(lr)
return lr
def main():
global start_epoch, total_iters, best_err, max_epo
num_log_img = 4
# train_epoch_max = 1e5
saveName = args.logname + "_spW{}_mW{}_ep{}_b{}".format(args.sp_w, args.m_w, args.epochs, args.batchsize)
log = logger.Logger(args.savemodel, name=saveName , s_train = 'train')
val_log = logger.Logger(args.savemodel, name=saveName , s_train = 'val')
start_full_time = time.time()
for epoch in range(start_epoch, args.epochs+1):
print('This is %d-th epoch, total iter: %d' % (epoch, len(TrainImgLoader)))
total_train_loss = 0
total_test_loss = 0
lr = adjust_learning_rate(optimizer,epoch)
log.scalar_summary('lr', lr, epoch)
## training ##
start_time = time.time()
for batch_idx, (imgL_crop, imgR_crop, disp_crop_L) in enumerate(TrainImgLoader):
torch.cuda.synchronize()
data_time = time.time() - start_time
loss, disp_loss, spCol_loss, spPos_loss, viz = train(imgL_crop,imgR_crop, disp_crop_L)
torch.cuda.synchronize()
print('Epoch [%.2d: %.4d] training loss = %.3f , data time = %.2f, total time = %.2f' %(epoch, batch_idx, loss, data_time, time.time() - start_time))
total_train_loss += loss
if total_iters % 10 == 0:
log.scalar_summary('total_loss_batch', loss, total_iters)
log.scalar_summary('disp_loss_batch', disp_loss, total_iters)
log.scalar_summary('spixel_loss_batch', spCol_loss + spPos_loss, total_iters)
log.scalar_summary('col_loss_batch', spCol_loss, total_iters)
log.scalar_summary('pos_loss_batch', spPos_loss, total_iters)
total_iters += 1
start_time = time.time()
print('epoch %d total training loss = %.3f' %(epoch, total_train_loss/len(TrainImgLoader)))
if epoch % args.recFre == 0:
with torch.no_grad():
save_res.write_log(args, total_train_loss / len(TrainImgLoader), epoch,
viz, imgL_crop, imgR_crop, disp_crop_L, log, num_log_img,thres=15)
else:
log.scalar_summary('avg_loss', total_train_loss / len(TrainImgLoader), epoch)
## Test ##
# val_epoch_size = 1e4
test_iter = len(TestImgLoader)
for batch_idx, (imgL, imgR, disp_L) in enumerate(TestImgLoader):
test_loss, viz = test(imgL,imgR, disp_L.clone())
print('Iter %d error in val = %.3f' %(batch_idx, test_loss))
total_test_loss += test_loss
print('epoch %d total 3-px error in val = %.3f' %(epoch, total_test_loss/test_iter))
# torch.cuda.synchronize()
if epoch % args.saveFre == 0:
savefilename = args.savemodel + '/' + saveName
# b_best = total_test_loss/len(TestImgLoader)*100 < best_err
save_res.save_ckpt({
'start_epoch': epoch + 1,
'best_err': best_err,
'max_epo': max_epo,
'state_dict': model.state_dict(),
'optimz_state': optimizer.state_dict()
}, savefilename, epoch, False)
list_ckpt = glob(os.path.join(savefilename, 'epoch_*.tar'))
list_ckpt.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
if len(list_ckpt) > 5:
os.remove(list_ckpt[0])
if total_test_loss / test_iter < best_err:
best_err = total_test_loss / test_iter
max_epo = epoch
savefilename = args.savemodel + '/' + saveName
# shutil.copyfile(savefilename + '/epoch_%d.tar' % epoch, savefilename + '/best_model.tar')
torch.save({
'start_epoch': epoch + 1,
'best_err': best_err,
'max_epo': max_epo,
'state_dict': model.state_dict(),
'optimz_state': optimizer.state_dict()
}, savefilename + '/best_model.tar')
print('Best epoch %d ; Best test error = %.3f' % (max_epo, best_err))
if epoch % args.recFre == 0:
with torch.no_grad():
save_res.write_log(args, total_test_loss / test_iter, epoch,
viz, imgL, imgR, disp_L, val_log, num_log_img, b_train=False,thres=15)
else:
val_log.scalar_summary('avg_loss', total_test_loss / test_iter, epoch)
print('full finetune time = %.2f HR' %((time.time() - start_full_time)/3600))
print('Best epoch: {}\t Best_err: {}\t'.format(max_epo, best_err))
if __name__ == '__main__':
main()