-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscale_pyramid.py
178 lines (132 loc) · 4.65 KB
/
scale_pyramid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import daisy
import numpy as np
import skimage.measure
import zarr
# monkey-patch os.mkdirs, due to bug in zarr
import os
prev_makedirs = os.makedirs
def makedirs(name, mode=0o777, exist_ok=False):
# always ok if exists
return prev_makedirs(name, mode, exist_ok=True)
os.makedirs = makedirs
def downscale_block(in_array, out_array, factor, block):
dims = len(factor)
in_data = in_array.to_ndarray(block.read_roi, fill_value=0)
in_shape = daisy.Coordinate(in_data.shape[-dims:])
assert in_shape.is_multiple_of(factor)
n_channels = len(in_data.shape) - dims
if n_channels >= 1:
factor = (1,)*n_channels + factor
if in_data.dtype == np.uint64:
slices = tuple(slice(k//2, None, k) for k in factor)
out_data = in_data[slices]
else:
out_data = skimage.measure.block_reduce(in_data, factor, np.mean)
try:
out_array[block.write_roi] = out_data
except Exception:
print("Failed to write to %s" % block.write_roi)
raise
return 0
def downscale(in_array, out_array, factor, write_size):
print("Downsampling by factor %s" % (factor,))
dims = in_array.roi.dims()
block_roi = daisy.Roi((0,)*dims, write_size)
print("Processing ROI %s with blocks %s" % (out_array.roi, block_roi))
daisy.run_blockwise(
out_array.roi,
block_roi,
block_roi,
process_function=lambda b: downscale_block(
in_array,
out_array,
factor,
b),
read_write_conflict=False,
num_workers=60,
max_retries=0,
fit='shrink')
def create_scale_pyramid(in_file, in_ds_name, scales, chunk_shape):
ds = zarr.open(in_file)
# make sure in_ds_name points to a dataset
try:
daisy.open_ds(in_file, in_ds_name)
except Exception:
raise RuntimeError("%s does not seem to be a dataset" % in_ds_name)
if not in_ds_name.endswith('/s0'):
ds_name = in_ds_name + '/s0'
print("Moving %s to %s" % (in_ds_name, ds_name))
ds.store.rename(in_ds_name, in_ds_name + '__tmp')
ds.store.rename(in_ds_name + '__tmp', ds_name)
else:
ds_name = in_ds_name
in_ds_name = in_ds_name[:-3]
print("Scaling %s by a factor of %s" % (in_file, scales))
prev_array = daisy.open_ds(in_file, ds_name)
if chunk_shape is not None:
chunk_shape = daisy.Coordinate(chunk_shape)
else:
chunk_shape = daisy.Coordinate(prev_array.data.chunks)
print("Reusing chunk shape of %s for new datasets" % (chunk_shape,))
if prev_array.n_channel_dims == 0:
num_channels = 1
elif prev_array.n_channel_dims == 1:
num_channels = prev_array.shape[0]
else:
raise RuntimeError(
"more than one channel not yet implemented, sorry...")
for scale_num, scale in enumerate(scales):
try:
scale = daisy.Coordinate(scale)
except Exception:
scale = daisy.Coordinate((scale,)*chunk_shape.dims())
next_voxel_size = prev_array.voxel_size*scale
next_total_roi = prev_array.roi.snap_to_grid(
next_voxel_size,
mode='grow')
next_write_size = chunk_shape*next_voxel_size
print("Next voxel size: %s" % (next_voxel_size,))
print("Next total ROI: %s" % next_total_roi)
print("Next chunk size: %s" % (next_write_size,))
next_ds_name = in_ds_name + '/s' + str(scale_num + 1)
print("Preparing %s" % (next_ds_name,))
next_array = daisy.prepare_ds(
in_file,
next_ds_name,
total_roi=next_total_roi,
voxel_size=next_voxel_size,
write_size=next_write_size,
dtype=prev_array.dtype,
num_channels=num_channels)
downscale(prev_array, next_array, scale, next_write_size)
prev_array = next_array
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Create a scale pyramide for a zarr/N5 container.")
parser.add_argument(
'--file',
'-f',
type=str,
help="The input container")
parser.add_argument(
'--ds',
'-d',
type=str,
help="The name of the dataset")
parser.add_argument(
'--scales',
'-s',
nargs='*',
type=int,
required=True,
help="The downscaling factor between scales")
parser.add_argument(
'--chunk_shape',
'-c',
nargs='*',
type=int,
default=None,
help="The size of a chunk in voxels")
args = parser.parse_args()
create_scale_pyramid(args.file, args.ds, args.scales, args.chunk_shape)