Skip to content

Commit 73be9f7

Browse files
committed
mv folders so that they are in order
1 parent 3c1426e commit 73be9f7

21 files changed

+28
-26
lines changed

.gitignore

+3-1
Original file line numberDiff line numberDiff line change
@@ -184,4 +184,6 @@ flycheck_*.el
184184
# network security
185185
/network-security.data
186186

187-
187+
GPATH
188+
GRTAGS
189+
GTAGS
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

README.md

+25-25
Original file line numberDiff line numberDiff line change
@@ -60,31 +60,31 @@ GitHub 上有许多实现《统计学习方法》的仓库。本仓库与它们
6060

6161
## 目录
6262

63-
- [第 2 章 - 感知机](2.Perceptron)
64-
- [感知机](2.Perceptron/perceptron.py)
65-
- [第 3 章 - k 近邻法](3.KNN)
66-
- [k 近邻模型](3.KNN/knn.py)
67-
- [k 近邻模型 - 使用 KD 树实现](3.KNN/knn_kdtree.py)
68-
- [第 4 章 - 朴素贝叶斯法](4.NaiveBayes)
69-
- [使用极大似然估计的朴素贝叶斯模型](4.NaiveBayes/NaiveBayesMLE.py)
70-
- [使用贝叶斯估计的朴素贝叶斯模型](4.NaiveBayes/NaiveBayesMAP.py)
71-
- [第 5 章 - 决策树](5.DecisionTree)
72-
- [ID3 决策树](5.DecisionTree/ID3.py)
73-
- [C4.5 决策树](5.DecisionTree/C4.5.py)
74-
- [决策树剪枝算法](5.DecisionTree/prune.py)
75-
- [分类 CART 决策树](5.DecisionTree/ClassificationCART.py)
76-
- [分类 CART 决策树剪枝算法](5.DecisionTree/pruneClassificationCART.py)
77-
- [回归 CART 决策树](5.DecisionTree/RegressionCART.py)
78-
- [第 6 章 - 逻辑斯谛回归与最大熵模型](6.LogisticRegression-MaxEntropy)
79-
- [逻辑斯谛回归模型](6.LogisticRegression-MaxEntropy/BinaryLogisticRegression.py)
80-
- [最大熵模型](6.LogisticRegression-MaxEntropy/MaxEntropy.py)
81-
- [第 7 章 - 支持向量机](7.SVM)
82-
- [支持向量机](7.SVM/SVM.py)
83-
- [第 8 章 - 提升方法](8.Boosting)
84-
- [AdaBoost](8.Boosting/AdaBoost.py)
85-
- [梯度提升树](8.Boosting/GBDT.py)
86-
- [第 9 章 - EM 算法及其推广](9.EM)
87-
- [高斯混合模型](9.EM/GMM.py)
63+
- [第 2 章 - 感知机](02.Perceptron)
64+
- [感知机](02.Perceptron/perceptron.py)
65+
- [第 3 章 - k 近邻法](03.KNN)
66+
- [k 近邻模型](03.KNN/knn.py)
67+
- [k 近邻模型 - 使用 KD 树实现](03.KNN/knn_kdtree.py)
68+
- [第 4 章 - 朴素贝叶斯法](04.NaiveBayes)
69+
- [使用极大似然估计的朴素贝叶斯模型](04.NaiveBayes/NaiveBayesMLE.py)
70+
- [使用贝叶斯估计的朴素贝叶斯模型](04.NaiveBayes/NaiveBayesMAP.py)
71+
- [第 5 章 - 决策树](05.DecisionTree)
72+
- [ID3 决策树](05.DecisionTree/ID3.py)
73+
- [C4.5 决策树](05.DecisionTree/C4.5.py)
74+
- [决策树剪枝算法](05.DecisionTree/prune.py)
75+
- [分类 CART 决策树](05.DecisionTree/ClassificationCART.py)
76+
- [分类 CART 决策树剪枝算法](05.DecisionTree/pruneClassificationCART.py)
77+
- [回归 CART 决策树](05.DecisionTree/RegressionCART.py)
78+
- [第 6 章 - 逻辑斯谛回归与最大熵模型](06.LogisticRegression-MaxEntropy)
79+
- [逻辑斯谛回归模型](06.LogisticRegression-MaxEntropy/BinaryLogisticRegression.py)
80+
- [最大熵模型](06.LogisticRegression-MaxEntropy/MaxEntropy.py)
81+
- [第 7 章 - 支持向量机](07.SVM)
82+
- [支持向量机](07.SVM/SVM.py)
83+
- [第 8 章 - 提升方法](08.Boosting)
84+
- [AdaBoost](08.Boosting/AdaBoost.py)
85+
- [梯度提升树](08.Boosting/GBDT.py)
86+
- [第 9 章 - EM 算法及其推广](09.EM)
87+
- [高斯混合模型](09.EM/GMM.py)
8888
- [第 10 章 - 隐马尔科夫模型](10.HMM)
8989
- [前向算法](10.HMM/Forward.py)
9090
- [后向算法](10.HMM/Backward.py)

0 commit comments

Comments
 (0)