-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathndlibCustom_tester.py
executable file
·35 lines (26 loc) · 1.13 KB
/
ndlibCustom_tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import networkx as nx
import ndlib.models.ModelConfig as mc
from ndlib.viz.mpl.DiffusionTrend import DiffusionTrend
from ndlib.viz.mpl.DiffusionPrevalence import DiffusionPrevalence
from ndlibCustom.SEIR_ASModel import SEIR_ASModel
import numpy as np
# Network generation
g = nx.erdos_renyi_graph(1000, 0.1)
for i in list(g.edges()):
g.edges[i]['weight'] = np.random.random_sample()
#CUSTOM SEIR_AS MODEL SIMULATION
print("Simulating...")
# Model selection
model = SEIR_ASModel(g)
# Model Configuration
cfg = mc.Configuration()
cfg.add_model_parameter('beta', 0.57) #Infection rate from I_A/S Neighbors
cfg.add_model_parameter('gamma', 0.15) #Recovery/Removal rate
cfg.add_model_parameter('alpha', 0.2) #Latent period
cfg.add_model_parameter('kappa', 0.25) #Symptomatic/Asymptomatic Ratio
#This parameter "smoothens" out the infection rate in the first iterations.
cfg.add_model_parameter('tp_rate', 1) #Infection rate does not depend on neighbour sample size
cfg.add_model_parameter("fraction_infected", 0.005) #Starting infected nodes
model.set_initial_status(cfg)
# Simulation execution
iteration = model.iteration_bunch(2,progress_bar=True)