-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
79 lines (62 loc) · 1.23 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
title: "VIPVIZA-LPL"
output:
github_document:
toc: true
toc_depth: 4
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, warning = FALSE)
```
```{r clearenvironment, include=FALSE}
rm(list = ls())
```
```{r, include=FALSE}
# Data path (hard coded file path).
markdown_path <- "~/projekt_data/2019-03-11_VIPVIZA-ITC_data/rData/markdown.RData"
# Load data:
load(markdown_path)
# Library
library(ggplot2)
```
# Preprocessing
## NMR
### A. Pre-imputation diagnostics
Percent missing:
```{r}
dim(unproc_samplemeta)
tempdata_dataMatrix$data$percent_missing
```
### B. Post-imputation diagnostics
```{r, fig.height=7, fig.width=7}
tempdata_dataMatrix$plots$scatter
tempdata_dataMatrix$plots$density
```
### C. Outlier analysis
PCA:
```{r, fig.height=7, fig.width=7}
c_id <- data.frame(
row_n = seq(1, nrow(missData.dataMatrix))
)
plot_pca(
Filter(is.numeric, missData.dataMatrix),
c = c_id
)$scores_plot
plot_pca(
Filter(is.numeric, missData.dataMatrix),
c = c_id
)$loadings_plot
```
Column-wise boxplot:
```{r, fig.height=7, fig.width=7}
geom_cwiseboxplot(
x = Filter(is.numeric, missData.dataMatrix),
c = c_id[,1]
)
```
# Session info
```{r}
sessionInfo()
```