-
Notifications
You must be signed in to change notification settings - Fork 1
/
Snakefile
84 lines (67 loc) · 2.15 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import pandas as pd
import os
from functools import partial
configfile: "config/config.yaml"
configfile: "config/experiments.yaml"
configfile: "config/extras.yaml"
configfile: "config/tuning.yaml"
APPROACHES = [
"unconstrained",
"loss_constrained",
"architecture_constrained",
"offline_constrained"
]
TASKS = [
"air_temperature",
"dew_point_temperature",
"surface_air_pressure",
"relative_humidity",
"water_vapor_mixing_ratio",
]
N_SPLITS = config["data_partitioning"]["forecast_reference_time"]["n_splits"]
DATA_DIR = Path(os.getenv("SNAKEMAKE_DATA_DIR", "data/"))
include: "rules/common.smk"
include: "rules/eda.smk"
include: "rules/main.smk"
include: "rules/extras.smk"
# rule all_eda:
# "results/eda/stations/", "results/eda/model"
rule all_results:
input:
expand(
"results/experiments/{experiment}/{partition}/{focus}",
partition=["test"],
experiment=["default","time_generalization"],
focus=["performance","physical_consistency"]
),
expand(
"results/experiments/{experiment}/{partition}/analysis",
partition=["test"],
experiment=["loss_alpha", "data_efficiency", "time_generalization"]
),
expand(
"results/experiments/{experiment}/{partition}/physical_consistency",
partition=["test"],
experiment=["data_reduction_consistency"]
)
rule all_performance:
input:
expand(
"results/experiments/{experiment}/{partition}/performance",
partition=["test", "train"],
experiment=["default","time_generalization"]
)
rule all_physical_consistency:
input:
expand(
"results/experiments/{experiment}/{partition}/physical_consistency",
partition=["test"],
experiment=["default","time_generalization","data_reduction_consistency"]
)
rule all_analysis:
input:
expand(
"results/experiments/{experiment}/{partition}/analysis",
partition=["test"],
experiment=["loss_alpha", "data_efficiency", "time_generalization"]
)