-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodels.py
63 lines (51 loc) · 2.28 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
from torchid_nb.module.lti import MimoLinearDynamicalOperator, SisoLinearDynamicalOperator
from torchid_nb.module.static import MimoStaticNonLinearity, MimoChannelWiseNonLinearity
class ParallelWHNet(torch.nn.Module):
def __init__(self, nb_1=12, na_1=12, nb_2=13, na_2=12):
super(ParallelWHNet, self).__init__()
self.nb_1 = nb_1
self.na_1 = na_1
self.nb_2 = nb_2
self.na_2 = na_2
self.G1 = MimoLinearDynamicalOperator(1, 2, n_b=self.nb_1, n_a=self.na_1, n_k=1)
self.F_nl = MimoChannelWiseNonLinearity(2, n_hidden=10)
#self.F_nl = MimoStaticNonLinearity(2, 2, n_hidden=10)
self.G2 = MimoLinearDynamicalOperator(2, 1, n_b=self.nb_2, n_a=self.na_2, n_k=0)
#self.G3 = SisoLinearDynamicalOperator(n_b=3, n_a=3, n_k=1)
def forward(self, u):
y1_lin = self.G1(u)
y1_nl = self.F_nl(y1_lin) # B, T, C1
y2_lin = self.G2(y1_nl) # B, T, C2
return y2_lin #+ self.G3(u)
class ParallelWHNetVar(torch.nn.Module):
def __init__(self):
super(ParallelWHNetVar, self).__init__()
self.nb_1 = 3
self.na_1 = 3
self.nb_2 = 3
self.na_2 = 3
self.G1 = MimoLinearDynamicalOperator(1, 16, n_b=self.nb_1, n_a=self.na_1, n_k=1)
self.F_nl = MimoStaticNonLinearity(16, 16) #MimoChannelWiseNonLinearity(16, n_hidden=10)
self.G2 = MimoLinearDynamicalOperator(16, 1, n_b=self.nb_2, n_a=self.na_2, n_k=1)
def forward(self, u):
y1_lin = self.G1(u)
y1_nl = self.F_nl(y1_lin) # B, T, C1
y2_lin = self.G2(y1_nl) # B, T, C2
return y2_lin
class ParallelWHResNet(torch.nn.Module):
def __init__(self):
super(ParallelWHResNet, self).__init__()
self.nb_1 = 4
self.na_1 = 4
self.nb_2 = 4
self.na_2 = 4
self.G1 = MimoLinearDynamicalOperator(1, 2, n_b=self.nb_1, n_a=self.na_1, n_k=1)
self.F_nl = MimoChannelWiseNonLinearity(2, n_hidden=10)
self.G2 = MimoLinearDynamicalOperator(2, 1, n_b=self.nb_2, n_a=self.na_2, n_k=1)
self.G3 = SisoLinearDynamicalOperator(n_b=6, n_a=6, n_k=1)
def forward(self, u):
y1_lin = self.G1(u)
y1_nl = self.F_nl(y1_lin) # B, T, C1
y2_lin = self.G2(y1_nl) # B, T, C2
return y2_lin + self.G3(u)