-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpred-5.R
188 lines (141 loc) · 5.75 KB
/
pred-5.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
library("e1071")
library("gramEvol")
library("Metrics")
library("parallel")
library("memoise")
set.seed(1)
options(mc.cores = 8)
source("load_data.R")
source("libs/lag_window.R")
source("libs/memofitness.R")
source("prediction/mapping_predictor.R")
N_train = 15000
# remove the daylight saving
dt = dt[-index_daylight_saving,]
learn_forecaster <- function(dt, train_period, target_index, ge_model, N_train = 2000) {
# get the GE model
feature_extract = ge_model$feature_extract
learner = ge_model$learner
# get all features (omit the na's)
all_features = feature_extract(dt)
all_features = na.omit(all_features)
# get the valid indices for training
valid_train_indices = index(all_features[train_period,])[!is.na(dt[train_period, target_index])]
train_y = dt[valid_train_indices, target_index]
# for index 2 and 3, the target is the difference
if (target_index == 1) {
train_y = factorizer1(dt[valid_train_indices, target_index])
} else if (target_index == 4) {
train_y = factorizer4(dt[valid_train_indices, target_index])
}
train_y = na.omit(train_y)
train_x = all_features[index(train_y),]
# select a maximum number for training the model
if (nrow(train_x) > N_train) {
set.seed(0)
ind = sort(sample(1:nrow(train_x), N_train))
} else {
ind = 1:nrow(train_x)
}
# learn the model. classifiy for 1 & 4, regression for 2 & 3
if (target_index == 1 || target_index == 4) {
mdl = learner(coredata(train_x[ind,]), as.factor(coredata(train_y[ind])))
} else {
mdl = learner(coredata(train_x[ind,]), coredata(train_y[ind]))
}
return (mdl)
}
iterative_forecaster <- function(dt, target_period, ge_model1, ge_model2, ge_model3, ge_model4) {
forecast_nas <- function(ge_model, target_index) {
# get the GE model
feature_extract = ge_model$feature_extract
model = ge_model$model
# get all features (omit the na's)
all_features = feature_extract(dt)
all_features = na.omit(all_features)
# get the NA targets
absent_targets = index(dt[target_period])[is.na(dt[target_period, target_index])]
# which we have features for
pred_x = na.omit(all_features[absent_targets,])
# predict
pred_y = predict(model, pred_x)
if (is.factor(pred_y[1])) {
pred_y = as.numeric(as.character(pred_y))
}
pred_y = xts(as.numeric(pred_y), index(pred_x))
# return raw prediction
return (pred_y)
}
while (any(is.na(dt[target_period,]))) {
print(paste("Remaining NAs:", sum(is.na(dt[target_period,]))))
pred1 = forecast_nas(ge_model1, 1)
pred2 = forecast_nas(ge_model2, 2)
pred3 = forecast_nas(ge_model3, 3)
pred4 = forecast_nas(ge_model4, 4)
dt_merged = dt
dt_merged[,1] = na.ts.merge(dt_merged[,1], pred1)
dt_merged[,2] = na.ts.merge(dt_merged[,2], round(pred2, 1))
dt_merged[,3] = na.ts.merge(dt_merged[,3], round(pred3, 1))
dt_merged[,4] = na.ts.merge(dt_merged[,4], pred4)
dt = dt_merged
}
return (dt)
}
################################################################
# Forwards
print("Learning Forward 1")
load("models/d5f1.RData")
ge_model_f1 = eval(ev5f_1$best$expressions)
ge_model_f1$model = learn_forecaster(dt, sp5, 1, ge_model_f1, N_train)
print("Learning Forward 2")
load("models/d5f2.RData")
ge_model_f2 = eval(ev5f_2$best$expressions)
ge_model_f2$model = learn_forecaster(dt, sp5, 2, ge_model_f2, N_train)
print("Learning Forward 3")
load("models/d5f3.RData")
ge_model_f3 = eval(ev5f_3$best$expressions)
ge_model_f3$model = learn_forecaster(dt, sp5, 3, ge_model_f3, N_train)
print("Learning Forward 4")
load("models/d5f4.RData")
ge_model_f4 = eval(ev5f_4$best$expressions)
ge_model_f4$model = learn_forecaster(dt, sp5, 4, ge_model_f4, N_train)
dt_forward = iterative_forecaster(dt, sp5, ge_model_f1, ge_model_f2, ge_model_f3, ge_model_f4)
################################################################
# Backwards
reverse_dt <- function(dt) {
dt_in_backwards = dt
dt_in_backwards[,1] = rev(coredata(dt_in_backwards)[,1])
dt_in_backwards[,2] = rev(coredata(dt_in_backwards)[,2])
dt_in_backwards[,3] = rev(coredata(dt_in_backwards)[,3])
dt_in_backwards[,4] = rev(coredata(dt_in_backwards)[,4])
return(dt_in_backwards)
}
dt_in_backwards = reverse_dt(dt)
sp5rb = sort(nrow(dt) - (436836:(521836-120)))
sp5b = range(index(dt_in_backwards)[sp5rb])
sp5b = do.call(paste, list(substr(sp5b[[1]], 1, 19), substr(sp5b, 1, 19)[[2]], sep="/"))
print("Learning Backwards 1")
load("models/d5b1.RData")
ge_model_b1 = eval(ev5b_1$best$expressions)
ge_model_b1$model = learn_forecaster(dt_in_backwards, sp5b, 1, ge_model_b1, N_train)
print("Learning Backwards 2")
load("models/d5b2.RData")
ge_model_b2 = eval(ev5b_2$best$expressions)
ge_model_b2$model = learn_forecaster(dt_in_backwards, sp5b, 2, ge_model_b2, N_train)
print("Learning Backwards 3")
load("models/d5b3.RData")
ge_model_b3 = eval(ev5b_3$best$expressions)
ge_model_b3$model = learn_forecaster(dt_in_backwards, sp5b, 3, ge_model_b3, N_train)
print("Learning Backwards 4")
load("models/d5b4.RData")
ge_model_b4 = eval(ev5b_4$best$expressions)
ge_model_b4$model = learn_forecaster(dt_in_backwards, sp5b, 4, ge_model_b4, N_train)
dt_backward = iterative_forecaster(dt_in_backwards, sp5b, ge_model_b1, ge_model_b2, ge_model_b3, ge_model_b4)
dt_backward = reverse_dt(dt_backward)
##################################################################
dt_5 = dt
dt_5[sp5,1] = round(na.ts.double.merge(dt_5[sp5,1], dt_forward[sp5,1], dt_backward[sp5,1]))
dt_5[sp5,2] = round(na.ts.double.merge(dt_5[sp5,2], dt_forward[sp5,2], dt_backward[sp5,2]), 1)
dt_5[sp5,3] = round(na.ts.double.merge(dt_5[sp5,3], dt_forward[sp5,3], dt_backward[sp5,3]), 1)
dt_5[sp5,4] = round(na.ts.double.merge(dt_5[sp5,4], dt_forward[sp5,4], dt_backward[sp5,4]))
#save(dt_5, file="pred-5.RData")