-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_model.py
177 lines (153 loc) · 6.03 KB
/
generate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import sys
NODES = "nodes"
SOURCE = "source"
SINK = "sink"
ARCS = "arcs"
MAXIMIZE = "Maximize \n"
SUBJECT_TO = "Subject To \n"
BOUNDS = "Bounds \n"
END = "End\n"
OBJ = "obj: "
class GLPK_Solver:
def __init__(self, filename: str):
self.nodes = 0
self.source = 0
self.sink = 0
self.arcs = 0
self.filename = filename
self.objective = ""
self.bounds = []
self.subject_to = [[]]
self.model_name = ""
self.already_added_lines = set()
def set_model_name(self):
"""Generate the model name"""
filename = os.path.basename(self.filename)
modelFilename = filename.replace("inst", "model").replace(".txt", "")
dir_path = os.path.dirname(self.filename)
self.model_name = os.path.join(dir_path, modelFilename)
def set_up_attributes(self):
"""
Set up class values and add arcs string
"""
with open(self.filename, "r") as flot_instance:
for line in flot_instance:
arguments = line.split()
if len(arguments) == 2:
self.set_up_properties(*arguments)
elif arguments:
if tuple(arguments[:2]) not in self.already_added_lines:
self.already_added_lines.add(tuple(arguments[:2]))
self.add_arc(*arguments)
def set_up_properties(self, arg: str, value: str):
"""
Auxiliary function to set up certain attributes when reading the file
:param arg: The argument being read (Nodes, source, sink or arcs)
:param value: The value that has to be set
:return:
"""
if arg == NODES:
self.nodes = int(value)
self.subject_to = [f"x_{node}: " for node in range(self.nodes)]
elif arg == SOURCE:
self.source = value
elif arg == SINK:
self.sink = value
elif arg == ARCS:
self.arcs = int(value)
else:
raise Exception
def add_arc(self, source: str, destination: str, flow: str):
"""
Add an arc from the source node to the destination node
Build the bound constraint with the flow as upper bound
"""
if source != destination:
self.bounds.append(f"0 <= x_{source}_{destination} <= {flow}")
self.subject_to[int(source)] += f" + x_{source}_{destination}"
self.subject_to[int(destination)] += f" - x_{source}_{destination}"
def build_constraints(self):
"""
Build problem constraints
"""
for node in map(str, range(self.nodes)):
if node == self.source:
self.objective = "".join(self.subject_to[int(node)][4:]) + "\n"
self.subject_to[int(node)] += f" {'>=' if node == self.source else '<=' if node == self.sink else '='} 0"
def write_to_file(self):
"""
Write objective, constraints and bounds to file
"""
self.subject_to = "\n".join(self.subject_to) + "\n"
self.bounds = "\n".join(self.bounds) + "\n"
model_content = f"{MAXIMIZE + OBJ}{self.objective}{SUBJECT_TO}{self.subject_to}{BOUNDS}{self.bounds}{END}"
with open(self.model_name + ".lp", "w") as model_out:
model_out.write(model_content)
def generate_model(self):
self.set_model_name()
self.set_up_attributes()
self.build_constraints()
self.write_to_file()
def solve_model(self):
"""
Solve model using glpsol --lp
"""
self.generate_model()
os.system(f"glpsol --lp {self.model_name}.lp -o {self.model_name}.sol")
class GLPK_Graph:
def __init__(self, nodes, source, sink, filename):
self.flow_graph = [[0 for i in range(nodes)] for _ in range(nodes)]
self.max_capacity_graph = [[0 for i in range(nodes)] for _ in range(nodes)]
self.source = int(source)
self.sink = int(sink)
self.filename = filename
self.visited = []
def get_graph_info(self):
with open(f"{self.filename}{'.sol'}", 'r') as file:
lines = file.readlines()
count = 0
for line in lines:
columns = line.split()
if count == 2:
try:
if columns and columns[2] != "--":
_, source, destination = columns[1].split("_")
flow = int(columns[3])
capacity = int(columns[5])
source, destination = int(source), int(destination)
self.flow_graph[source][destination] = flow
self.max_capacity_graph[source][destination] = capacity
except ValueError:
break
if columns and columns[0] == "No.":
count += 1
def find_s_t_cut(self):
self.get_graph_info()
self._find_s_t_cut()
def _find_s_t_cut(self):
queue = [self.source]
self.visited = []
while len(queue) > 0:
node = queue.pop()
self.visited.append(node)
for destination, destination_flow in enumerate(self.flow_graph[node]):
if destination_flow and destination_flow < self.max_capacity_graph[node][destination] and destination not in self.visited:
queue.append(destination)
def is_optimal(self):
self.find_s_t_cut()
return self.sink not in self.visited
def main(filename: str):
generator = GLPK_Solver(filename)
generator.solve_model()
print(f"Found solution for {generator.model_name}")
graph = GLPK_Graph(generator.nodes, generator.source, generator.sink, generator.model_name)
print("GLPK Solution is optimal: ", graph.is_optimal())
if __name__ == "__main__":
try:
instance_to_solve = sys.argv[1]
main(instance_to_solve)
except IndexError:
print("Enter a filename")
except FileNotFoundError:
print("Enter a correct filename")