The goal of cyclingtools
is to provide tools for making easier to
analyze data in cycling.
You can install the development version of cyclingtools
from
GitHub with:
# install.packages("remotes")
remotes::install_github("fmmattioni/cyclingtools")
The package comes with a demonstration data frame to show how the functions work and also to show you how you can setup your data:
library(cyclingtools)
demo_critical_power
#> PO TTE
#> 1 446 100
#> 2 385 172
#> 3 324 434
#> 4 290 857
#> 5 280 1361
Perform a simple analysis from the chosen critical power models:
simple_results <- critical_power(
.data = demo_critical_power,
power_output_column = "PO",
time_to_exhaustion_column = "TTE",
method = c("3-hyp", "2-hyp", "linear", "1/time"),
plot = TRUE,
all_combinations = FALSE,
reverse_y_axis = FALSE
)
simple_results
#> # A tibble: 4 x 12
#> method data model CP `CP SEE` `W'` `W' SEE` Pmax `Pmax SEE` R2
#> <chr> <lis> <lis> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 3-hyp <tib… <nls> 260. 3.1 27410. 4794 1004. 835. 0.998
#> 2 2-hyp <tib… <nls> 262. 1.6 24174. 1889. NA NA 0.997
#> 3 linear <tib… <lm> 266. 3 20961. 2248. NA NA 1.00
#> 4 1/time <tib… <lm> 274. 6.2 17784. 1160 NA NA 0.987
#> # … with 2 more variables: RMSE <dbl>, plot <list>
You can also plot the results:
simple_results %>%
dplyr::filter(method == "3-hyp") %>%
dplyr::pull(plot)
#> [[1]]
You can also perform an analysis with all the possible combinations of
time-to-exhaustion trials provided. All you need to do is to set
all_combinations = TRUE
:
combinations_results <- critical_power(
.data = demo_critical_power,
power_output_column = "PO",
time_to_exhaustion_column = "TTE",
method = c("3-hyp", "2-hyp", "linear", "1/time"),
plot = TRUE,
all_combinations = TRUE,
reverse_y_axis = FALSE
)
combinations_results
#> # A tibble: 74 x 13
#> index method data model CP `CP SEE` `W'` `W' SEE` Pmax `Pmax SEE`
#> <chr> <chr> <lis> <lis> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 [1,2… 3-hyp <tib… <nls> 260. 3.1 27410. 4794 1004. 835.
#> 2 [1,2… 2-hyp <tib… <nls> 262. 1.6 24174. 1889. NA NA
#> 3 [1,2… linear <tib… <lm> 266. 3 20961. 2248. NA NA
#> 4 [1,2… 1/time <tib… <lm> 274. 6.2 17784. 1160 NA NA
#> 5 [1,2… 3-hyp <tib… <nls> 246. 6.2 42699. 7655 595. 70.2
#> 6 [1,2… 2-hyp <tib… <nls> 261. 4.7 24814. 3691. NA NA
#> 7 [1,2… linear <tib… <lm> 269. 5.9 19977. 2877. NA NA
#> 8 [1,2… 1/time <tib… <lm> 278. 7.9 17194. 1339. NA NA
#> 9 [1,2… 3-hyp <tib… <nls> 255 1.9 36462. 3328. 627. 63.7
#> 10 [1,2… 2-hyp <tib… <nls> 262. 2.2 24940. 2882. NA NA
#> # … with 64 more rows, and 3 more variables: R2 <dbl>, RMSE <dbl>, plot <list>
You can also plot the results:
combinations_results %>%
dplyr::slice(1) %>%
dplyr::pull(plot)
#> [[1]]
demo_critical_speed
#> # A tibble: 3 x 2
#> Distance TTE
#> <int> <int>
#> 1 956 180
#> 2 1500 300
#> 3 3399 720
Perform a simple analysis from the chosen critical power models:
simple_results <- critical_speed(
.data = demo_critical_speed,
distance_column = "Distance",
time_to_exhaustion_column = "TTE",
method = c("3-hyp", "2-hyp", "linear", "1/time"),
plot = TRUE,
all_combinations = FALSE,
reverse_y_axis = FALSE
)
simple_results
#> # A tibble: 3 x 10
#> method data model CS `CS SEE` `D'` `D' SEE` R2 RMSE plot
#> <chr> <list> <list> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <lis>
#> 1 2-hyp <tibble [3 × 3]> <nls> 4.52 0 143. 0.94 1.00 1.43 <gg>
#> 2 linear <tibble [3 × 3]> <lm> 4.52 0 142. 1 1 0.86 <gg>
#> 3 1/time <tibble [3 × 3]> <lm> 4.53 0 142. 1.02 1.00 0 <gg>
-
Training impulse analyses (iTRIMP, bTRIMP, eTRIMP, luTRIMP)
-
Suggestions? Feel free to open an issue!
cycleRtools: A suite of functions for analysing cycling data.
citation("cyclingtools")
#>
#> Maturana M, Felipe, Fontana, Y F, Pogliaghi, Silvia, Passfield, Louis,
#> Murias, M J (2018). "Critical power: How different protocols and models
#> affect its determination." _Journal of Science and Medicine in Sport_,
#> *21*(7), 1489. doi: 10.1016/j.jsams.2017.11.015 (URL:
#> https://doi.org/10.1016/j.jsams.2017.11.015).
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Article{,
#> title = {Critical power: How different protocols and models affect its determination},
#> author = {Mattioni Maturana and {Felipe} and {Fontana} and Federico Y and {Pogliaghi} and {Silvia} and {Passfield} and {Louis} and {Murias} and Juan M},
#> journal = {Journal of Science and Medicine in Sport},
#> volume = {21},
#> number = {7},
#> pages = {1489},
#> year = {2018},
#> publisher = {Elsevier},
#> doi = {10.1016/j.jsams.2017.11.015},
#> }