-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogic.tex
82 lines (72 loc) · 2.51 KB
/
logic.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
\subsection{Syntax}
A \emph{state formula} $\phi$ is of the form
\[
\top \ |\
p \ |\
\neg \phi \ |\
\phi \wedge \phi \ |\
\PJ{J} (\psi)
\]
where $\psi$ is a \emph{path formula} of the form
\[
\X \psi \ |\
\psi \until \psi \ |\
\psi \until^{\leq n} \psi.
\]
\subsection{Semantics}
Let $M = (\Act, S, p, L)$ be an MDP, $s \in S$, and $\phi$ a PCTL
state formula. Define $M, s \models \phi$ as follows.
\[
\myPr{s}{K}{\phi} =
\Pr [ \{ \pi : K, \pi \models \psi \textmd{ with } \pi_0 = s \} ].
\]
\begin{eqnarray*}
M, s \models \top\\
M, s \models p & \textmd{ if } & p \in L(s)\\
M, s \models \neg \phi & \textmd{ if } & M, s \not\models \phi\\
M, s \models \phi \wedge \phi'
& \textmd{ if } & M, s \models \phi \textmd{ and }
M, s \models \phi'\\
M, s \models \PJ{J} \psi
& \textmd{ if } &
\myPr{s}{M_{\scheduler{S}}}{\psi} \in J
\textmd{ for every scheduler } \scheduler{S}
\end{eqnarray*}
\begin{eqnarray*}
K, \pi \models \X \psi
& \textmd{ if } &
K, \pi[1] \models \psi\\
K, \pi \models \psi \until \psi'
& \textmd{ if } &
\textmd{there is a } j \geq 0 \textmd{ such that }
K, \pi[j] \models \psi' \textmd{ and } \\
& & K, \pi[k] \models \psi
\textmd{ for every } 0 \leq k < j \\
K, \pi \models \psi \until^{\leq n} \psi'
& \textmd{ if } &
\textmd{there is a } n \geq j \geq 0 \textmd{ such that }
K, \pi[j] \models \psi' \textmd{ and } \\
& & K, \pi[k] \models \psi \textmd{ for every } 0 \leq k < j
\end{eqnarray*}
Let $P = (M, \Obs, r)$ be a POMDP, $\info \in \info (S)$, and
$\phi$ a PCTL state formula. Define
\begin{eqnarray*}
\myE{\info}{K}{\psi} = E_{\info} [K, \pi \models \psi
\textmd{ with } \pi_0 = s].
\end{eqnarray*}
Define $P, \info \models \phi$ as follows.
\begin{eqnarray*}
P, \info \models \top \\
P, \info \models p & \textmd{ if } & \info \in \valueof{p}\\
P, \info \models \neg \phi & \textmd{ if } & P, \info \not\models \phi\\
P, \info \models \phi \wedge \phi' & \textmd{ if } &
P, \info \models \phi \textmd{ and } P, \info \models \phi'\\
P, \info \models \PJ{J} (\psi) & \textmd{ if } &
\myE{\info}{M_{\scheduler{S}}}{\psi} \in J \\
P, \info \models \dpriv{\epsilon}{\delta} (\psi) & \textmd{ if } &
\myE{\info}{M_{\scheduler{S}}}{\psi} \leq e^{\epsilon}
\myE{\info'}{M_{\scheduler{S}}}{\psi} + \delta \textmd{ and }\\
&& \myE{\info'}{M_{\scheduler{S}}}{\psi} \leq e^{\epsilon}
\myE{\info}{M_{\scheduler{S}}}{\psi} + \delta \textmd{ for
every } \info N \info'.
\end{eqnarray*}