forked from AlexHarker/HISSTools_Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStatistics.hpp
349 lines (266 loc) · 9.76 KB
/
Statistics.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#ifndef STATISTICS_HPP
#define STATISTICS_HPP
#include <algorithm>
#include <numeric>
#include <cmath>
// Helper functors
struct Pow2 { template <class T> T operator()(T a) const { return a * a; } };
struct Pow3 { template <class T> T operator()(T a) const { return a * a * a; } };
struct Pow4 { template <class T> T operator()(T a) const { return Pow2()(Pow2()(a)); } };
struct Absolute { template <class T> T operator()(T a) const { return std::abs(a); } };
struct Logarithm { template <class T> T operator()(T a) const { return log(a); } };
struct Index { template <class T> double operator[](T a) const { return static_cast<double>(a); } };
struct LogIndex { template <class T> double operator[](T a) const { return a ? log2(static_cast<double>(a)) : 0.0; } };
template <class T> struct LogWidth
{
LogWidth(T& data) : mData(data) {}
double operator[](size_t i) const { return i ? mData[i] * (log2(i + 0.5) - log2(i - 0.5)) : mData[i] * 0.0; }
const T mData;
};
template <class T, typename Op> struct ModifiedData
{
ModifiedData(T& data) : mData(data) {}
double operator[](size_t i) const { return Op()(mData[i]); }
const T mData;
};
template <class T, typename Op> struct ModifiedDiffData
{
ModifiedDiffData(T& data, double value) : mData(data), mValue(value) {}
double operator[](size_t i) const { return Op()(mData[i] - mValue); }
const T mData;
double mValue;
};
template <typename Op> struct IndexDiffOp
{
IndexDiffOp(double value) : mValue(value) {}
double operator[](size_t i) const { return Op()(static_cast<double>(i) - mValue); }
double mValue;
};
template <typename Op> struct LogIndexDiffOp
{
LogIndexDiffOp(double value) : mValue(value) {}
double operator[](size_t i) const { return Op()(LogIndex()[i] - mValue); }
double mValue;
};
// Length
template <class T> double statLength(const T input, size_t size)
{
return static_cast<double>(size);
}
// Min / Max Values
template <class T> double statMin(const T input, size_t size)
{
return size ? *(std::min_element(input, input + size)) : std::numeric_limits<double>::infinity();
}
template <class T> double statMax(const T input, size_t size)
{
return size ? *(std::max_element(input, input + size)) : -std::numeric_limits<double>::infinity();
}
// Counts
template <class T, typename CountOp> double statCount(const T input, size_t size, CountOp op)
{
size_t count = 0;
for (size_t i; i < size; i++)
if (op(input[i]))
count++;
return count;
}
template <class T, typename Op>
struct FixedCompare
{
FixedCompare(T value, Op op) : mValue(value) {}
bool operator()(T a) { return Op()(a, mValue); }
T mValue;
};
template <class T, class U> double statCountAbove(const T input, U threshold, size_t size)
{
return statCount(input, size, FixedCompare<U, std::greater<U>>(threshold));
}
template <class T, class U> double statCountBelow(const T input, U threshold, size_t size)
{
return statCount(input, size, FixedCompare<U, std::less<U>>(threshold));
}
// Ratios
template <class T, class U> double statRatioAbove(const T input, U threshold, size_t size)
{
return statCountAbove(input, threshold, size) / statLength(input, size);
}
template <class T, class U> double statRatioBelow(const T input, U threshold, size_t size)
{
return statCountBelow(input, threshold, size) / statLength(input, size);
}
// Sums
template <class T> double statSum(const T input, size_t size)
{
double sum = 0.0;
for (size_t i = 0; i < size; i++)
sum += input[i];
return sum;
}
template <class T> double statSumAbs(const T input, size_t size)
{
return statSum(ModifiedData<T, Absolute>(input), size);
}
template <class T> double statSumSquares(const T input, size_t size)
{
return statSum(ModifiedData<const T, Pow2>(input), size);
}
template <class T> double statSumLogs(const T input, size_t size)
{
return statSum(ModifiedData<const T, Logarithm>(input), size);
}
// Weighted Sums
template <class T, class U> double statWeightedSum(const T data, const U weights, size_t size)
{
double sum = 0.0;
for (size_t i = 0; i < size; i++)
sum += weights[i] * data[i];
return sum;
}
template <class T> double statWeightedSum(const T input, size_t size)
{
return statWeightedSum(Index(), input, size);
}
template <class T> double statWeightedSumAbs(const T input, size_t size)
{
return statWeightedSum(Index(), ModifiedData<T, Absolute>(input), size);
}
template <class T> double statWeightedSumSquares(const T input, size_t size)
{
return statWeightedSum(Index(), ModifiedData<T, Pow2>(input), size);
}
template <class T> double statWeightedSumLogs(const T input, size_t size)
{
return statWeightedSum(Index(), ModifiedData<T, Logarithm>(input), size);
}
// Weighted Sums (by weights)
template <class T> double statWeightedSum(const T input, const T weights, size_t size)
{
return statWeightedSum(input, weights, size);
}
template <class T> double statWeightedSumAbs(const T input, const T weights, size_t size)
{
return statWeightedSum(ModifiedData<const T, Absolute>(input), weights, size);
}
template <class T> double statWeightedSumSquares(const T input, const T weights, size_t size)
{
return statWeightedSum(ModifiedData<const T, Pow2>(input), weights, size);
}
template <class T> double statWeightedSumLogs(const T input, const T weights, size_t size)
{
return statWeightedSum(ModifiedData<const T, Logarithm>(input), weights, size);
}
// Product
template <class T> double statProduct(const T input, size_t size)
{
double product = 1.0;
for (size_t i = 0; i < size; i++)
product *= input[i];
return product;
}
// Means
template <class T> double statMean(const T input, size_t size)
{
return statSum(input, size) / statLength(input, size);
}
template <class T> double statMeanSquares(const T input, size_t size)
{
return statSumSquares(input, size) / statLength(input, size);
}
template <class T> double statGeometricMean(const T input, size_t size)
{
return exp(statSumLogs(input, size) / statLength(input, size));
}
// Variance
template <class T> double statVariance(const T input, size_t size)
{
double mean = statMean(input, size);
return statSum(ModifiedDiffData<const T, Pow2>(input, mean), size) / statLength(input, size);
}
// Standard Deviation
template <class T> double statStandardDeviation(const T input, size_t size)
{
return sqrt(statVariance(input, size));
}
// PDF Percentile
template <class T> double statPDFPercentile(const T input, double centile, size_t size)
{
double target = statSum(input, size) * std::min(100.0, std::max(centile, 0.0)) / 100.0;
double sum = 0.0;
for (size_t i = 0; i < size; i++)
{
sum += input[i];
if (sum >= target)
return static_cast<double>(1 + i - ((sum - target) / input[i]));
}
return static_cast<double>(size - 1);
}
// Shape
template <class T> double statCentroid(const T input, size_t size)
{
return statWeightedSum(input, size) / statSum(input, size);
}
template <class T> double statSpread(const T input, size_t size)
{
double centroid = statCentroid(input, size);
return statWeightedSum(IndexDiffOp<Pow2>(centroid), input, size) / statSum(input, size);
}
template <class T> double statSkewness(const T input, size_t size)
{
double centroid = statCentroid(input, size);
double spreadNorm = Pow3()(sqrt(statSpread(input, size)));
return statWeightedSum(IndexDiffOp<Pow3>(centroid), input, size) / (spreadNorm * statSum(input, size));
}
template <class T> double statKurtosis(const T input, size_t size)
{
double centroid = statCentroid(input, size);
double spreadNorm = Pow2()(statSpread(input, size));
return statWeightedSum(IndexDiffOp<Pow4>(centroid), input, size) / (spreadNorm * statSum(input, size));
}
// Log Shape
template <class T> double statLogCentroid(const T input, size_t size)
{
return exp2(statWeightedSum(LogIndex(), LogWidth<T>(input), size) / (statSum(LogWidth<T>(input), size)));
}
template <class T> double statLogSpread(const T input, size_t size)
{
double centroid = statLogCentroid(input, size);
return statWeightedSum(LogIndexDiffOp<Pow2>(log2(centroid)), LogWidth<T>(input), size) / (statSum(LogWidth<T>(input), size));
}
template <class T> double statLogSkewness(const T input, size_t size)
{
double centroid = statLogCentroid(input, size);
double spreadNorm = Pow3()(sqrt(statLogSpread(input, size)));
return statWeightedSum(LogIndexDiffOp<Pow3>(log2(centroid)), LogWidth<T>(input), size) / (spreadNorm * statSum(LogWidth<T>(input), size));
}
template <class T> double statLogKurtosis(const T input, size_t size)
{
double centroid = statCentroid(input, size);
double spreadNorm = Pow2()(statLogSpread(input, size));
return statWeightedSum(LogIndexDiffOp<Pow4>(log2(centroid)), LogWidth<T>(input), size) / (spreadNorm * statSum(LogWidth<T>(input), size));
}
// Flatness
template <class T> double statFlatness(const T input, size_t size)
{
return statGeometricMean(input, size) / statMean(input, size);
}
// RMS
template <class T> double statRMS(const T input, size_t size)
{
return sqrt(statMeanSquares(input, size));
}
// Crest
template <class T> double statCrest(const T input, size_t size)
{
return statMax(input, size) / statRMS(input, size);
}
// Arg Min and Max
template <class T> double statMaxPosition(const T input, size_t size)
{
return size ? std::distance(input, std::max_element(input, input + size)) : -std::numeric_limits<double>::infinity();
}
template <class T> double statMinPosition(const T input, size_t size)
{
return size ? std::distance(input, std::min_element(input, input + size)) : -std::numeric_limits<double>::infinity();
}
#endif /* Statistics_h */