-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_10_metrics.py
50 lines (41 loc) · 1.87 KB
/
run_10_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
'''
wd ca 170MB/subj
'''
import os
from metrics.calc_metrics import calc_local_metrics
from variables import template_dir, in_data_root_path, subjects_list, \
metrics_root_path, wd_root_path, selectfiles_templates
working_dir_base = os.path.join(wd_root_path, 'wd_metrics')
ds_dir_base = os.path.join(metrics_root_path, 'metrics_test')
brain_mask = 'PATH/Templates/MNI_resampled_brain_mask.nii'
template_dir = os.path.join(template_dir, 'parcellations')
# con mat parameters
bp_freq_list = [(0.01, 0.1)] #[(None, None), (0.01, 0.1)]
TR = 2.0
parcellations_dict = {}
parcellations_dict['basc_444'] = {
'nii_path': os.path.join(template_dir,
'basc_multiscale_2015/template_cambridge_basc_multiscale_nii_sym/template_cambridge_basc_multiscale_sym_scale444.nii.gz'),
'is_probabilistic': False}
parcellations_dict['basc_197'] = {
'nii_path': os.path.join(template_dir,
'basc_multiscale_2015/template_cambridge_basc_multiscale_nii_sym/template_cambridge_basc_multiscale_sym_scale197.nii.gz'),
'is_probabilistic': False}
use_n_procs = 5
# plugin_name = 'MultiProc'
plugin_name = 'CondorDAGMan'
for subject_id in subjects_list:
working_dir = os.path.join(working_dir_base, subject_id)
ds_dir = os.path.join(ds_dir_base, subject_id)
print('\n\nsubmitting %s' % subject_id)
calc_local_metrics(brain_mask=brain_mask,
preprocessed_data_dir=in_data_root_path,
subject_id=subject_id,
parcellations_dict=parcellations_dict,
bp_freq_list=bp_freq_list,
TR=TR,
selectfiles_templates=selectfiles_templates,
working_dir=working_dir,
ds_dir=ds_dir,
use_n_procs=use_n_procs,
plugin_name=plugin_name)