diff --git a/demos/general/demo_pipeline.py b/demos/general/demo_pipeline.py index 12d5ec5b8..76914dc17 100755 --- a/demos/general/demo_pipeline.py +++ b/demos/general/demo_pipeline.py @@ -27,7 +27,7 @@ except: pass -import caiman as cm +import caiman from caiman.motion_correction import MotionCorrect from caiman.source_extraction.cnmf import cnmf as cnmf from caiman.source_extraction.cnmf import params as params @@ -49,48 +49,16 @@ def main(): "%(relativeCreated)12d [%(filename)s:%(funcName)20s():%(lineno)s][%(process)d] %(message)s", level=logging.WARNING) - if cfg.input is None: - # If no input is specified, use sample data, downloading if necessary - fnames = [download_demo('Sue_2x_3000_40_-46.tif')] - else: - fnames = cfg.input - # First set up some parameters for data and motion correction + opts = params.CNMFParams(params_from_file=cfg.input) + + if cfg.input is not None: + opts.change_params({"data": {"fnames": cfg.input}}) + if not opts.data['fnames']: # Set neither by CLI arg nor through JSON, so use default data + fnames = [download_demo('Sue_2x_3000_40_-46.tif')] + opts.change_params({"data": {"fnames": fnames}}) - # dataset dependent parameters - fr = 30 # imaging rate in frames per second - decay_time = 0.4 # length of a typical transient in seconds - dxy = (2., 2.) # spatial resolution in x and y in (um per pixel) - # note the lower than usual spatial resolution here - max_shift_um = (12., 12.) # maximum shift in um - patch_motion_um = (100., 100.) # patch size for non-rigid correction in um - - # motion correction parameters - pw_rigid = True # flag to select rigid vs pw_rigid motion correction - # maximum allowed rigid shift in pixels - max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)] - # start a new patch for pw-rigid motion correction every x pixels - strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)]) - # overlap between patches (size of patch in pixels: strides+overlaps) - overlaps = (24, 24) - # maximum deviation allowed for patch with respect to rigid shifts - max_deviation_rigid = 3 - border_nan = 'copy' - - params_dict = {'fnames': fnames, - 'fr': fr, - 'decay_time': decay_time, - 'dxy': dxy, - 'pw_rigid': pw_rigid, - 'max_shifts': max_shifts, - 'strides': strides, - 'overlaps': overlaps, - 'max_deviation_rigid': max_deviation_rigid, - 'border_nan': border_nan} - - opts = params.CNMFParams(params_dict=params_dict) - - m_orig = cm.load_movie_chain(fnames) + m_orig = caiman.load_movie_chain(opts.data['fnames']) # play the movie (optional) # playing the movie using opencv. It requires loading the movie in memory. @@ -102,11 +70,11 @@ def main(): moviehandle.play(q_max=99.5, fr=60, magnification=2) # start a cluster for parallel processing - c, dview, n_processes = cm.cluster.setup_cluster(backend=cfg.cluster_backend, n_processes=cfg.cluster_nproc) + c, dview, n_processes = caiman.cluster.setup_cluster(backend=cfg.cluster_backend, n_processes=cfg.cluster_nproc) # Motion Correction # first we create a motion correction object with the specified parameters - mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion')) + mc = MotionCorrect(opts.data['fnames'], dview=dview, **opts.get_group('motion')) # note that the file is not loaded in memory # Run (piecewise-rigid motion) correction using NoRMCorre @@ -114,10 +82,10 @@ def main(): # compare with original movie if not cfg.no_play: - m_orig = cm.load_movie_chain(fnames) - m_els = cm.load(mc.mmap_file) + m_orig = caiman.load_movie_chain(opts.data['fnames']) + m_els = caiman.load(mc.mmap_file) ds_ratio = 0.2 - moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov*mc.nonneg_movie, + moviehandle = caiman.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov*mc.nonneg_movie, m_els.resize(1, 1, ds_ratio)], axis=2) moviehandle.play(fr=60, q_max=99.5, magnification=2) # press q to exit @@ -128,50 +96,17 @@ def main(): # the boundaries # memory map the file in order 'C' - fname_new = cm.save_memmap(mc.mmap_file, base_name='memmap_', order='C', + fname_new = caiman.save_memmap(mc.mmap_file, base_name='memmap_', order='C', border_to_0=border_to_0) # exclude borders # now load the file - Yr, dims, T = cm.load_memmap(fname_new) + Yr, dims, T = caiman.load_memmap(fname_new) images = np.reshape(Yr.T, [T] + list(dims), order='F') # load frames in python format (T x X x Y) # restart cluster to clean up memory - cm.stop_server(dview=dview) - c, dview, n_processes = cm.cluster.setup_cluster(backend=cfg.cluster_backend, n_processes=cfg.cluster_nproc) - - # Parameters for source extraction and deconvolution - p = 1 # order of the autoregressive system - gnb = 2 # number of global background components - merge_thr = 0.85 # merging threshold, max correlation allowed - rf = 15 - # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50 - stride_cnmf = 6 # amount of overlap between the patches in pixels - K = 4 # number of components per patch - gSig = [4, 4] # expected half size of neurons in pixels - # initialization method (if analyzing dendritic data using 'sparse_nmf') - method_init = 'greedy_roi' - ssub = 2 # spatial subsampling during initialization - tsub = 2 # temporal subsampling during initialization - - # parameters for component evaluation - opts_dict = {'fnames': fnames, - 'p': p, - 'fr': fr, - 'nb': gnb, - 'rf': rf, - 'K': K, - 'gSig': gSig, - 'stride': stride_cnmf, - 'method_init': method_init, - 'rolling_sum': True, - 'merge_thr': merge_thr, - 'n_processes': n_processes, - 'only_init': True, - 'ssub': ssub, - 'tsub': tsub} - - opts.change_params(params_dict=opts_dict); + caiman.stop_server(dview=dview) + c, dview, n_processes = caiman.cluster.setup_cluster(backend=cfg.cluster_backend, n_processes=cfg.cluster_nproc) # RUN CNMF ON PATCHES # First extract spatial and temporal components on patches and combine them @@ -196,7 +131,7 @@ def main(): # save results cnm.estimates.Cn = Cn - cnm.save(fname_new[:-5]+'_init.hdf5') + cnm.save(fname_new[:-5] + '_init.hdf5') # FIXME # RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution cnm2 = cnm.refit(images, dview=dview) @@ -207,18 +142,6 @@ def main(): # b) a minimum peak SNR is required over the length of a transient # c) each shape passes a CNN based classifier - min_SNR = 2 # signal to noise ratio for accepting a component - rval_thr = 0.85 # space correlation threshold for accepting a component - use_cnn = True - cnn_thr = 0.99 # threshold for CNN based classifier - cnn_lowest = 0.1 # neurons with cnn probability lower than this value are rejected - - cnm2.params.set('quality', {'decay_time': decay_time, - 'min_SNR': min_SNR, - 'rval_thr': rval_thr, - 'use_cnn': use_cnn, - 'min_cnn_thr': cnn_thr, - 'cnn_lowest': cnn_lowest}) cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview) if not cfg.no_play: @@ -252,7 +175,7 @@ def main(): include_bck=False) # background not shown # Stop the cluster and clean up log files - cm.stop_server(dview=dview) + caiman.stop_server(dview=dview) if not cfg.keep_logs: log_files = glob.glob('*_LOG_*') @@ -261,6 +184,7 @@ def main(): def handle_args(): parser = argparse.ArgumentParser(description="Demonstrate 2P Pipeline using batch algorithm") + parser.add_argument("--configfile", default=os.path.join(caiman.paths.caiman_datadir(), 'demos', 'general', 'params_demo_pipeline.json'), help="JSON Configfile for Caiman parameters") parser.add_argument("--keep_logs", action="store_true", help="Keep temporary logfiles") parser.add_argument("--no_play", action="store_true", help="Do not display results") parser.add_argument("--cluster_backend", default="multiprocessing", help="Specify multiprocessing, ipyparallel, or single to pick an engine") diff --git a/demos/general/params_demo_pipeline.json b/demos/general/params_demo_pipeline.json new file mode 100644 index 000000000..2e5241bd0 --- /dev/null +++ b/demos/general/params_demo_pipeline.json @@ -0,0 +1,46 @@ +{ + "data": { + "fr": 30, + "decay_time": 0.4, + "dxy": [2.0, 2.0], + "nb": 2 + }, + "init": { + "K": 4, + "gSig": [4, 4], + "method_init": "greedy_roi", + "rolling_sum": true, + "ssub": 2, + "tsub": 2 + }, + "motion": { + "pw_rigid": true, + "max_shifts": [6, 6], + "strides": [50, 50], + "overlaps": [24, 24], + "max_deviation_rigid": 3, + "border_nan": "copy" + }, + "preprocess": { + "p": 1 + }, + "temporal": { + "p": 1 + }, + "patch": { + "rf": 15, + "stride": 6, + "only_init": true + }, + "merging": { + "merge_thr": 0.85 + }, + "quality": { + "decay_time": 0.4, + "min_SNR": 2, + "rval_thr": 0.85, + "use_cnn": true, + "min_cnn_thr": 0.99, + "cnn_lowest": 0.1 + } +}