forked from PyPSA/technology-data
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
52 lines (45 loc) · 2.18 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
configfile: "config.yaml"
rule compile_cost_assumptions:
input:
inflation_rate = "inputs/prc_hicp_aind__custom_9928419_spreadsheet.xlsx",
pypsa_costs = "inputs/costs_PyPSA.csv",
fraunhofer_costs = "inputs/Fraunhofer_ISE_costs.csv",
fraunhofer_energy_prices = "inputs/Fraunhofer_ISE_energy_prices.csv",
fraunhofer_vehicles_costs = "inputs/Fraunhofer_ISE_vehicles_costs.csv",
EWG_costs = "inputs/EWG_costs.csv",
dea_transport = "inputs/energy_transport_data_sheet_dec_2017.xlsx",
dea_vehicles = "inputs/data_sheets_for_commercial_freight_and_passenger_transport_0.xlsx",
dea_renewable_fuels = "inputs/data_sheets_for_renewable_fuels.xlsx",
dea_storage = "inputs/technology_data_catalogue_for_energy_storage.xlsx",
dea_generation = "inputs/technology_data_for_el_and_dh.xlsx",
dea_heating = "inputs/technologydatafor_heating_installations_marts_2018.xlsx",
dea_industrial = "inputs/technology_data_for_industrial_process_heat.xlsx",
dea_ship = "inputs/data_sheets_for_maritime_commercial_freight_and_passenger_transport.xlsx",
dea_ccts = "inputs/technology_data_for_carbon_capture_transport_storage.xlsx",
pnnl_energy_storage = "inputs/pnnl-energy-storage-database.xlsx",
manual_input = "inputs/manual_input.csv"
output:
expand("outputs/costs_{year}.csv", year = config["years"])
threads: 1
resources: mem=500
conda: "environment.yaml"
script: "scripts/compile_cost_assumptions.py"
# rule convert_fraunhofer:
# input:
# fraunhofer = "docu/Anhang-Studie-Wege-zu-einem-klimaneutralen-Energiesystem.pdf"
# output:
# costs = "inputs/Fraunhofer_ISE_costs.csv",
# energy_prices = "inputs/Fraunhofer_ISE_energy_prices.csv"
# threads: 1
# resources: mem=500
# conda: "environment.yaml"
# script: "scripts/convert_pdf_fraunhofer_to_dataframe.py"
rule convert_EWG:
input:
EWG = "docu/EWG_LUT_100RE_All_Sectors_Global_Report_2019.pdf"
output:
costs = "inputs/EWG_costs.csv",
threads: 1
resources: mem=500
conda: "environment.yaml"
script: "scripts/convert_pdf_EWG_to_dataframe.py"