forked from cloudflare/bn256
-
Notifications
You must be signed in to change notification settings - Fork 1
/
twist.go
227 lines (190 loc) · 4.95 KB
/
twist.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
package bn256
import (
"math/big"
"errors"
)
// twistPoint implements the elliptic curve Y²=X³+3/ξ over GF(p²). Points are
// kept in Jacobian form and T=Z² when valid. The group G₂ is the set of
// n-torsion points of this curve over GF(p²) (where n = Order)
type twistPoint struct {
X, Y, Z, T gfP2
}
var twistB = &gfP2{
gfP{0x75046774386b8d71, 0x5bd0854a46d36cf8, 0x664327a1d41c8414, 0x96c9abb932eeb2f},
gfP{0xb94f760fb4c5ee14, 0xdae9f8f24c3b6eb4, 0x77a675d2e52f4fe4, 0x736f31b09116c66b},
}
// twistGen is the generator of group G₂.
var twistGen = &twistPoint{
gfP2{
gfP{0x402c4ab7139e1404, 0xce1c368a183d85a4, 0xd67cf9a6cb8d3983, 0x3cf246bbc2a9fbe8},
gfP{0x88f9f11da7cdc184, 0x18293f95d69509d3, 0xb5ce0c55a735d5a1, 0x15134189bfd45a0},
},
gfP2{
gfP{0xbfac7d731e9e87a2, 0xa50bb8007962e441, 0xafe910a4e8270556, 0x5075c5429d69159a},
gfP{0xc2e07c1463ea9e56, 0xee4442052072ebd2, 0x561a519486036937, 0x5bd9394cc0d2cce},
},
gfP2{*newGFp(0), *newGFp(1)},
gfP2{*newGFp(0), *newGFp(1)},
}
func (c *twistPoint) String() string {
c.MakeAffine()
x, y := gfP2Decode(&c.X), gfP2Decode(&c.Y)
return "(" + x.String() + ", " + y.String() + ")"
}
func (c *twistPoint) Set(a *twistPoint) {
c.X.Set(&a.X)
c.Y.Set(&a.Y)
c.Z.Set(&a.Z)
c.T.Set(&a.T)
}
// IsOnCurve returns true iff c is on the curve.
func (c *twistPoint) IsOnCurve() bool {
c.MakeAffine()
if c.IsInfinity() {
return true
}
y2, x3 := &gfP2{}, &gfP2{}
y2.Square(&c.Y)
x3.Square(&c.X).Mul(x3, &c.X).Add(x3, twistB)
return *y2 == *x3
}
func (c *twistPoint) SetInfinity() {
c.X.SetZero()
c.Y.SetOne()
c.Z.SetZero()
c.T.SetZero()
}
func (c *twistPoint) IsInfinity() bool {
return c.Z.IsZero()
}
func (c *twistPoint) Add(a, b *twistPoint) {
// For additional comments, see the same function in curve.go.
if a.IsInfinity() {
c.Set(b)
return
}
if b.IsInfinity() {
c.Set(a)
return
}
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
z12 := (&gfP2{}).Square(&a.Z)
z22 := (&gfP2{}).Square(&b.Z)
u1 := (&gfP2{}).Mul(&a.X, z22)
u2 := (&gfP2{}).Mul(&b.X, z12)
t := (&gfP2{}).Mul(&b.Z, z22)
s1 := (&gfP2{}).Mul(&a.Y, t)
t.Mul(&a.Z, z12)
s2 := (&gfP2{}).Mul(&b.Y, t)
h := (&gfP2{}).Sub(u2, u1)
xEqual := h.IsZero()
t.Add(h, h)
i := (&gfP2{}).Square(t)
j := (&gfP2{}).Mul(h, i)
t.Sub(s2, s1)
yEqual := t.IsZero()
if xEqual && yEqual {
c.Double(a)
return
}
r := (&gfP2{}).Add(t, t)
v := (&gfP2{}).Mul(u1, i)
t4 := (&gfP2{}).Square(r)
t.Add(v, v)
t6 := (&gfP2{}).Sub(t4, j)
c.X.Sub(t6, t)
t.Sub(v, &c.X) // t7
t4.Mul(s1, j) // t8
t6.Add(t4, t4) // t9
t4.Mul(r, t) // t10
c.Y.Sub(t4, t6)
t.Add(&a.Z, &b.Z) // t11
t4.Square(t) // t12
t.Sub(t4, z12) // t13
t4.Sub(t, z22) // t14
c.Z.Mul(t4, h)
}
func (c *twistPoint) Double(a *twistPoint) {
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
A := (&gfP2{}).Square(&a.X)
B := (&gfP2{}).Square(&a.Y)
C := (&gfP2{}).Square(B)
t := (&gfP2{}).Add(&a.X, B)
t2 := (&gfP2{}).Square(t)
t.Sub(t2, A)
t2.Sub(t, C)
d := (&gfP2{}).Add(t2, t2)
t.Add(A, A)
e := (&gfP2{}).Add(t, A)
f := (&gfP2{}).Square(e)
t.Add(d, d)
c.X.Sub(f, t)
t.Add(C, C)
t2.Add(t, t)
t.Add(t2, t2)
c.Y.Sub(d, &c.X)
t2.Mul(e, &c.Y)
c.Y.Sub(t2, t)
t.Mul(&a.Y, &a.Z)
c.Z.Add(t, t)
}
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int) {
sum, t := &twistPoint{}, &twistPoint{}
for i := scalar.BitLen(); i >= 0; i-- {
t.Double(sum)
if scalar.Bit(i) != 0 {
sum.Add(t, a)
} else {
sum.Set(t)
}
}
c.Set(sum)
}
func (c *twistPoint) MakeAffine() {
if c.Z.IsOne() {
return
} else if c.Z.IsZero() {
c.X.SetZero()
c.Y.SetOne()
c.T.SetZero()
return
}
zInv := (&gfP2{}).Invert(&c.Z)
t := (&gfP2{}).Mul(&c.Y, zInv)
zInv2 := (&gfP2{}).Square(zInv)
c.Y.Mul(t, zInv2)
t.Mul(&c.X, zInv2)
c.X.Set(t)
c.Z.SetOne()
c.T.SetOne()
}
func (c *twistPoint) Neg(a *twistPoint) {
c.X.Set(&a.X)
c.Y.Neg(&a.Y)
c.Z.Set(&a.Z)
c.T.SetZero()
}
func (c *twistPoint) Frobenius(a *twistPoint) (*twistPoint, error) {
// We have to convert a from the sextic twist
// to the full GF(p^12) group, apply the Frobenius there, and convert
// back.
// The twist isomorphism is (X', Y') -> (xω², yω³). If we consider just
// X for a moment, then after applying the Frobenius, we have x̄ω^(2p)
// where x̄ is the conjugate of X. If we are going to apply the inverse
// isomorphism we need a value with a single coefficient of ω² so we
// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
// p, 2p-2 is a multiple of six. Therefore we can rewrite as
// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
// ω².
// A similar argument can be made for the Y value.
if !a.Z.IsOne() {
return nil, errors.New("a needs to be in affine coordinates")
}
c.X.Conjugate(&(a.X))
c.X.Mul(&(c.X), xiToPMinus1Over3)
c.Y.Conjugate(&(a.Y))
c.Y.Mul(&(c.Y), xiToPMinus1Over2)
c.Z.SetOne()
c.T.SetOne()
return c, nil
}